15 Matching Results

Search Results

Advanced search parameters have been applied.

Influence and measurement of mass ablation in ICF implosions

Description: Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount of residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.
Date: September 5, 2007
Creator: Spears, B K; Hicks, D; Velsko, C; Stoyer, M; Robey, H; Munro, D et al.
Partner: UNT Libraries Government Documents Department

Update on specifications for NIF ignition targets and their rollup into an error budget

Description: Targets intended to produce ignition on NIF are being simulated and the simulations are used to set specifications for target fabrication. Recent design work has focused on designs that assume only 1.0 MJ of laser energy instead of the previous 1.6 MJ. To perform with less laser energy, the hohlraum has been redesigned to be more efficient than previously, and the capsules are slightly smaller. The main-line hohlraum design now has a SiO2 foam fill, a wall of U-Dy-Au, and shields mounted between the capsule and the laser entrance holes. Two capsule designs are being considered. One has a graded doped Be(Cu) ablator, and the other graded doped CH(Ge). Both can perform acceptably with recently demonstrated ice layer quality, and with recently demonstrated outer surface roughness. Smoothness of the internal interfaces may be an issue for the Be(Cu) design, and it may be necessary either to polish partially coated shells or to improve process control so that the internal layers are smoother. Complete tables of specifications are being prepared for both targets, to be completed this fiscal year. All the specifications are being rolled together into an error budget indicating adequate margin for ignition with the new designs.
Date: July 11, 2005
Creator: Haan, S W; Herrmann, M C; Amendt, P A; Callahan, D A; Dittrich, T R; Edwards, M J et al.
Partner: UNT Libraries Government Documents Department

Towards an Integrated Model of the NIC Layered Implosions

Description: A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.
Date: October 31, 2011
Creator: Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H. et al.
Partner: UNT Libraries Government Documents Department

Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

Description: The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.
Date: December 16, 2011
Creator: Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R et al.
Partner: UNT Libraries Government Documents Department

Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility

Description: DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.
Date: May 2, 2012
Creator: Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H et al.
Partner: UNT Libraries Government Documents Department