5 Matching Results

Search Results

Advanced search parameters have been applied.

A research program in neutrino physics, cosmic rays and elementary particles. Progress report for Task A

Description: Physics interests of the group are focused primarily on tests of conservation laws and studies of fundamental interactions between particles. There is also a significant interest in astrophysics and cosmic rays. Task A consists of three experimental programs; a Double-Beta Decay study (currently at the Hoover Dam), a Reactor Neutrino program (until this year at Savannah River), and the IMB Proton Decay experiment in a Cleveland salt mine. Discussion of the research in each area is given.
Date: August 1, 1991
Creator: Reines, F. & Sobel, H.W.
Partner: UNT Libraries Government Documents Department

Gamma Ray and Neutrino Detector Facility (GRANDE). Progress report for Task C

Description: GRANDE is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. The authors proposed that the detector be constructed in phases, beginning with an active detector area of 31,000 m{sup 2} (GRANDE-I) and expanding to a final size of 100,000--150,000 m{sup 2}. Some of the characteristics of GRANDE-I are shown. GRANDE utilizes the proven technology of water Cerenkov detectors. A feasibility study has shown that the powerful background discrimination inherent in the directional property of the Cerenkov light and in the large size of the detector, will allow successful surface operation with an acceptably small trigger rate. The engineering analysis showed that the facility can be built over the reasonably short time span of 4 years using well-known construction technologies. Combining the neutrino detector and the extensive air shower array in a single facility greatly enhances the physics potential of GRANDE. It also achieves a considerable saving in cost and time since a sizable fraction of such costs, for either experiment, is in the site preparation. Additionally, the neutrino detector benefits from the efficient cosmic-ray anticoincidence afforded by the gamma detector. A site has been selected (a water-filled quarry near Little Rock, Arkansas) and an engineering firm has completed the preliminary design of the detector structure. They also have designed the water purification system, and have preliminary designs for the data harvesting electronics and other systems. During this past year the authors learned that the proposal to construct GRANDE-I was not approved by DOE. The construction of such a detector was considered premature by the reviewers and one major technical concern still dominated the reviews. In order to answer the technical concerns while waiting for the results from the current generation of gamma-ray detectors, they propose to construct and ...
Date: August 1, 1991
Creator: Sobel, H.W. & Yodh, G.B.
Partner: UNT Libraries Government Documents Department

Large-Area Liquid Scintillation Detector Slab

Description: A low-cost detector 18' x 2' x 5" has been developed for an underground cosmic ray neutrino experiment. The liquid employed is a high-clarity mineral oil-based mixture, and light is guided to the ends of the detector by total internal reflection at the surface of the Lucite container. Signals from 2 five-inch photomultipliers at each end give energy and event location for single penetrating particles, with relatively good discrimination against natural radioactivity by virtue of the substantial thickness. Data are presented on the response function of the tank, energy resolution, rates and thresholds. A number of modifications that have been tried are also described.
Date: March 1, 1966
Creator: Crouch, M. F.; Gurr, H. S.; Hruschka, A. A.; Jenkins, T. L.; Kropp, W.; Reines, F. et al.
Partner: UNT Libraries Government Documents Department

Report on the Depth Requirements for a Massive Detector at Homestake

Description: This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of tens of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent. Projections for signal and background capability for a larger and deeper (or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which provides enhanced capability for background rejection. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth ...
Date: December 22, 2008
Creator: Bernstein,A.; Blucher, E.; Cline, D. B.; Diwan, M. V.; Fleming, b.; Kadel, R. et al.
Partner: UNT Libraries Government Documents Department

Report of the Solar and Atmospheric Neutrino Working Group

Description: The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment ...
Date: October 22, 2004
Creator: Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F. et al.
Partner: UNT Libraries Government Documents Department