3 Matching Results

Search Results

Advanced search parameters have been applied.

Simulation of impact of the Generic Accident-Resistant Packaging (GAP)

Description: Finite element simulations modelling impact of the Generic Accident-Resistant Packaging (GAP) have been performed. The GAP is a nuclear weapon shipping container that will be used by accident response groups from both the United States and the United Kingdom. The package is a thin-walled steel structure filled with rigid polyurethane foam and weighs approximately 5100 lbs when loaded. The simulations examined 250 ft/s impacts onto a rigid target at several orientations. The development of the finite element model included studies of modelling assumptions and material parameters. Upon completion of the simulation series, three full-scale impact tests were performed. A comparison of the simulation results to the test data is given. Differences between the results and data are examined, and possible explanations for the differences are discussed.
Date: October 1, 1994
Creator: Slavin, A. M.
Partner: UNT Libraries Government Documents Department

Design and analysis of a high-performance shipping container for large payloads

Description: The packaging, designated the H1636A is a high-performing packageing for large payloads. The H1636A is 50 in. in diameter and 113 in. in length and weighs approximately 4600 lb when empty. The design objective was to meet 1996 proposed IAEA Type C criteria for air transport of large quantities of radioactive material (RAM). That is, the package should survive the standard Type B tests and more severe tests such as an impact onto an unyielding target at 280 ft/s and a one-hour jet fuel fire. The packaging consists of a large double-walled stainless steel outer drum filled with uniform density polyurethane foam. A stainless steel containment vessel (CV) with an inside diameter of 23 in. and a length of 78 in. carries the RAM. The CV has a nominal thickness of 0.375 in. and seals with two elastomeric 0-rings. The lid of the CV is joined to the body with a unique closure called a tape joint. The tape joint utilizes interlocking features preloaded with wedges and can withstand significant deformation.
Date: May 1, 1995
Creator: York, A.R. II & Slavin, A.M.
Partner: UNT Libraries Government Documents Department

Testing composite-to-metal tubular lap joints

Description: Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.
Date: November 1, 1993
Creator: Guess, T. R.; Reedy, E. D. Jr. & Slavin, A. M.
Partner: UNT Libraries Government Documents Department