17 Matching Results

Search Results

Advanced search parameters have been applied.

Organic solvent alteration of hydraulic properties of sedimentary rocks of low permeability: a review

Description: A review of the current literature on hydrophysical interactions of organic solutes with sedimentary rocks of low permeability is presented. The motivation was the premise that low permeability rocks may act as secondary (aquifer) barriers for the containment of hazardous organic wastes, thus preventing these wastes from contaminating the groundwater. However, this premise may be incorrect if organic wastes can affect the hydraulic conductivity of these rocks. The results indicate that very little work has been done concerning interactions of organics with consolidated subsurface materials. Available information on three related topics was summarized: the effect of organic compounds on the hydrophysical properties of clays, case studies concerning the interactions of organic compounds with clays and sedimentary rocks, and the effect of shales on inorganic transport. These studies give an indication of some research areas that need to be explored with regard to the effect of organic compounds on the hydrophysical properties of sedimentary rocks; these research needs are briefly summarized. 42 refs.
Date: May 1, 1985
Creator: Sklarew, D.S.
Partner: UNT Libraries Government Documents Department

Multielement detector for gas chromatography

Description: This report describes the results of a study to improve the capabilities of a gas chromatography-microwave-induced plasma (GC- MIP) detector system, determine the feasibility of empirical formula determination for simple mixtures containing elements of interest to fossil fuel analysis and, subsequently, explore applications for analysis of the complex mixtures associated with fossil fuels. The results of this study indicate that the GC-MIP system is useful as a specific-element detector that provides excellent elemental specificity for a number of elements of interest to the analysis of fossil fuels. It has reasonably good sensitivity for carbon, hydrogen, sulfur, and nickel, and better sensitivity for chlorine and fluorine. Sensitivity is poor for nitrogen and oxygen, however, probably because of undetected leaks or erosion of the plasma tube. The GC-MIP can also provide stoichiometric information about components of simple mixtures. If this powerful technique is to be available for complex mixtures, it will be necessary to greatly simplify the chromatograms by chemical fractionation. 38 refs., 46 figs., 16 tabs.
Date: November 1, 1988
Creator: Sklarew, D.S.; Evans, J.C. & Olsen, K.B.
Partner: UNT Libraries Government Documents Department

Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

Description: A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.
Date: February 1, 1983
Creator: English, C.J.; Petty, S.E. & Sklarew, D.S.
Partner: UNT Libraries Government Documents Department

Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

Description: The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received ...
Date: September 1, 1997
Creator: Huckaby, J.L. & Sklarew, D.S.
Partner: UNT Libraries Government Documents Department

In Situ Redox Manipulation of Subsurface Sediments from Fort Lewis, Washington: Iron Reduction and TCE Dechlorination Mechanisms

Description: The feasibility of chemically treating sediments from the Ft. Lewis, Washington, Logistics Center to develop a permeable barrier for dechlorination of TCE was investigated in a series of laboratory experiments.
Date: March 17, 2000
Creator: Szecsody, J.E.; Fruchter, J.S.; Sklarew, D.S. & Evans, J.C.
Partner: UNT Libraries Government Documents Department

Ventilation rates calculated from hydrogen release data in tanks equipped with standard hydrogen monitoring systems (SHMS)

Description: This report describes a method for estimating the ventilation rates of the high-level radioactive waste tank headspaces at the Hanford Site in Southeastern Washington state. The method, using hydrogen concentration data, is applied to all passively ventilated and selected mechanically ventilated tanks equipped with Standard Hydrogen Monitoring Systems (SHMS) and covers the time period from when the SHMS were installed through July 12, 1998. Results of the analyses are tabulated and compared with results from tracer gas studies and similar analyses of SHMS data. The method relies on instances of above-normal hydrogen releases and assumes the rate at which hydrogen is released by the waste is otherwise approximately constant. It also assumes that hydrogen is uniformly distributed in the tank headspace, so that at any given time the concentration of hydrogen in the effluent is approximately equal to the average headspace concentration and that measured by the SHMS. In general, the greatest single source of error in the method is the determination of the baseline hydrogen concentration, which in this study has been estimated by visual inspection of plotted data. Uncertainties in the calculated ventilation rates due to inaccurate baseline measurements are examined by performing a sensitivity analysis with upper and lower bounding values for the baseline concentration (in addition to the best estimate). A table lists the tanks considered in this report and the range of estimated ventilation rates obtained for each tank. When multiple events of above-normal hydrogen releases were observed, the range of estimated ventilation rates is given. Resulting values and their variability are consistent with those determined using tracer gases.
Date: September 1, 1998
Creator: Sklarew, D.S. & Huckaby, J.L.
Partner: UNT Libraries Government Documents Department

Testing and performance of the Pacific Northwest Laboratory 6-kg retort

Description: This report describes and discusses the design, construction, calibration and operations of the Pacific Northwest Laboratory (PNL) 6-kg retort. Use of this retort will help determine the distribution and speciation of Hg, As, Se, and Cd compounds as a function of retorting parameters in shale oil, retort water, and offgas. The first test consisted of heating the oil shale to 500/sup 0/C with a 100% nitrogen (N/sub 2/) sweep gas. Results of this test demonstrated that the system operates as designed; only two minor modifications were necessary to achieve satisfactory operation of the retort. 2 references, 3 figures, 1 table.
Date: February 1, 1984
Creator: Olsen, K.B.; Evans, J.C.; Girvin, D.C.; Sklarew, D.S. & Nelson, C.L.
Partner: UNT Libraries Government Documents Department

Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

Description: The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank.
Date: February 1, 1997
Creator: Huckaby, J.L.; Glissmeyer, J.A. & Sklarew, D.S.
Partner: UNT Libraries Government Documents Department

Tank vapor characterization project: Tank 241-S-102 temporal study headspace gas and vapor characterization results from samples collected on September 19, 1996

Description: This report presents the results from analysis of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.948% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.659% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Tables S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.
Date: August 1, 1997
Creator: Evans, J.C.; Pool, K.H.; Thomas, B.L. & Sklarew, D.S.
Partner: UNT Libraries Government Documents Department

Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996

Description: This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.
Date: September 1, 1997
Creator: Sklarew, D.S.; Pool, K.H.; Evans, J.C. & Hayes, J.C.
Partner: UNT Libraries Government Documents Department

Measurements of waste tank passive ventilation rates using tracer gases

Description: This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.
Date: September 1, 1997
Creator: Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C. & Remund, K.M.
Partner: UNT Libraries Government Documents Department

Tank Vapor Characterization Project: Tank 241-BY-108 temporal study headspace gas and vapor characterization results from samples collected on September 10, 1996

Description: This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.463% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.940% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.
Date: August 1, 1997
Creator: Evans, J.C.; Pool, K.H.; Thomas, B.L. & Sklarew, D.S.
Partner: UNT Libraries Government Documents Department

Tank Vapor Characterization Project: Tank 241-BX-103 headspace gas and vapor characterization results from samples collected on August 1, 1996

Description: This report presents the results from analyses of samples taken from headspace of waste storage tank 241-BX-103 (Tank BX-103) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-103 headspace, determined to be present at approximately 0.385% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.633% if the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.
Date: August 1, 1997
Creator: Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. & Edwards, J.A.
Partner: UNT Libraries Government Documents Department

Tank Vapor Characterization Project: Tank 241-BX-111 headspace gas and vapor characterization results from samples collected on August 27, 1996

Description: This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-111 (Tank BX-111) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Ammonia was the principal flammable constituent of the Tank BX-111 headspace, determined to be present at approximately 0.042 of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.157% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.
Date: August 1, 1997
Creator: Pool, K.H.; Evans, J.C.; Thomas, B.L. & Sklarew, D.S. Edwards, J.A.
Partner: UNT Libraries Government Documents Department

Waste tank ventilation rates measured with a tracer gas method

Description: Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.
Date: August 1, 1998
Creator: Huckaby, J.L.; Evans, J.C.; Sklarew, D.S. & Mitroshkov, A.V.
Partner: UNT Libraries Government Documents Department

Characterization of mercury, arsenic, and selenium in the product streams of the Pacific Northwest Laboratory 6-kg retort

Description: The objective of this program is to determine how retorting process parameters affect the partitioning of Hg, As, Se, and Cd from raw oil shale to spent shale, shale oil, retort water, and offgas. For each of the elements, the objective of this study is to (1) determine the distribution coefficients for each product stream; (2) identify the chemical forms in water, gas, and oil streams, with particular emphasis on inorganic or organometallic species known to be or suspected of being carcinogenic, toxic, or otherwise harmful; (3) investigate the mechanism(s) responsible for mobilization into each product stream for toxic or labile chemical forms identified in item 2 are mobilized into each product stream; and (4) the effect of retorting rate, maximum retorting temperature, and retorting atmosphere on items 1 and 3. A Green River shale from Colorado and a New Albany shale from Kentucky were heated at 1 to 2/sup 0/C/min and at 10/sup 0/C/min to maximum temperatures of 500 and 750/sup 0/C under a nitrogen sweep gas. The product streams were analyzed using a variety of methods including Zeeman atomic absorption spectroscopy, microwave-induced helium plasma spectroscopy, x-ray fluorescence, instrumental neutron activation analysis, high-pressure liquid and silica gel column chromatography, and mercury cold vapor atomic absorption. The results obtained using these analytical methods indicate that the distribution of mercury, arsenic, and selenium in the product stream is a function of oil shale type, heating rates, and maximum retorting temperatures. 11 refs., 27 figs., 5 tabs.
Date: December 1, 1985
Creator: Olsen, K.B.; Evans, J.C.; Sklarew, D.S.; Girvin, D.C.; Nelson, C.L.; Lepel, E.A. et al.
Partner: UNT Libraries Government Documents Department

DOE methods for evaluating environmental and waste management samples

Description: DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.
Date: October 1, 1994
Creator: Goheen, S. C.; McCulloch, M.; Thomas, B. L.; Riley, R. G.; Sklarew, D. S.; Mong, G. M. et al.
Partner: UNT Libraries Government Documents Department