2 Matching Results

Search Results

Advanced search parameters have been applied.

DESIGN AND PRELIMINARY TEST OF THE 1500 MHZ NSLS-II PASSIVE SUPERCONDUCTING RF CAVITY

Description: NSLS-II is a new ultra-bright 3 GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. Ion clearing gaps are required to suppress ion effects on the beam. The natural bunch length of 3mm is planned to be lengthened by means of a third harmonic cavity in order to increase the Touschek limited lifetime. Earlier work described the design alternatives and the geometry selected for a copper prototype. We subsequently have iterated the design to lower the R/Q of the cavity and to increase the diameter of the beam pipe ferrite HOM dampers to reduce the wakefield heating. A niobium cavity and full cryomodule including LN2 shield, magnetic shield and insulating vacuum vessel have been fabricated and installed. A passive SRF 3rd harmonic cavity consisting of two tightly coupled cells has been designed and fabricated for NSLS-II. Initial cold tests of this cavity are very promising. These tests have verified that the cavity frequency and mode separation between the 0 and {pi}-modes can be set at manufacture. Further, the frequency separation can be maintained over wide tuning ranges necessary for operation. Future work includes HOM damper and motorized tuner development.
Date: March 28, 2011
Creator: Rose, J.; Gash, W.; Kosciuk, B.; Ravindranath, V.; Sikora, B.; Sharma, S. et al.
Partner: UNT Libraries Government Documents Department

Transition from in-plane to out-of-plane azimuthal enhancement inAu+Au collisions

Description: The incident energy at which the azimuthal distributions in semi-central heavy ion collisions change from in-plane to out-of-plane enhancement--E{sub tran} is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle ({Theta}{sub flow}) relative to the beam axis. A systematic decrease of E{sub tran} as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.
Date: August 9, 2000
Creator: Andronic, A.; Stoicea, G.; Petrovici, M.; Simion, V.; Crochet,P.; Alard, J.P. et al.
Partner: UNT Libraries Government Documents Department