7 Matching Results

Search Results

Advanced search parameters have been applied.

Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

Description: The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.
Date: December 16, 2011
Creator: Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R et al.
Partner: UNT Libraries Government Documents Department

Observations and Modeling of Debris and Shrapnel Impacts on Optics and Diagnostics at the National Ignition Facility

Description: A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF). The National Ignition Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an Al thermo-mechanical package (TMP) with a thin (30 micron) Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100-1000X the pulse duration) 3D calculations of complex NIF targets.
Date: November 4, 2011
Creator: Eder, D; Bailey, D; Chamgers, F; Darnell, I; Nicola, P D; Dixit, S et al.
Partner: UNT Libraries Government Documents Department

3D Simulations of the NIF Indirect Drive Ignition Target Design

Description: The radiation hydrodynamics code Hydra is used to quantify the sensitivity of different NIF ignition point designs to several 3D effects. Each of the 48 NIF quads is included in the calculations and is allowed to have different power. With this model they studied the effect on imploded core symmetry of discrete laser spots (as opposed to idealized azimuthally-averaged rings) and random variations in laser power.
Date: January 5, 2010
Creator: Jones, O S; Milovich, J L; Callahan, D A; Edwards, M J; Landen, O L; Salmonson, J D et al.
Partner: UNT Libraries Government Documents Department

Towards an Integrated Model of the NIC Layered Implosions

Description: A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.
Date: October 31, 2011
Creator: Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H. et al.
Partner: UNT Libraries Government Documents Department

Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility

Description: DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.
Date: May 2, 2012
Creator: Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H et al.
Partner: UNT Libraries Government Documents Department