7 Matching Results

Search Results

Advanced search parameters have been applied.

Remote Chemical Sensing Using Quantum Cascade Lasers

Description: Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.
Date: January 30, 2003
Creator: Harper, Warren W. & Schultz, John F.
Partner: UNT Libraries Government Documents Department

Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

Description: The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR are offset by the superior performance, ma-turity, and robustness of SWIR lasers, detectors, and other components, while the reverse is true for ...
Date: February 20, 2003
Creator: Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M. & Schultz, John F.
Partner: UNT Libraries Government Documents Department

FY 2006 Infrared Photonics Final Report

Description: Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.
Date: December 28, 2006
Creator: Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy) et al.
Partner: UNT Libraries Government Documents Department

Fieldable Fourier Transform Spectrometer: System Construction, Background Variability Measurements, and Chemical Attack Warning Experiments

Description: The infrared sensors task at the Pacific Northwest National Laboratory (PNNL) is focused on the science and technology of remote and in-situ chemical sensors for detecting proliferation and countering terrorism. Missions to be addressed by remote chemical sensor development will include detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology relevant to these primary missions is also likely to be useful for battlefield chemical weapons defense, air operations support, monitoring emissions from chemical weapons destruction facilities or industrial chemical plants, and law enforcement applications. PNNL will seek to serve organizations with direct interest in these missions through collaborative research and development efforts approved by NA-22. During FY02, PNNL began assembling a remote IR detection capability that would allow field experiments to be conducted. The capability consists of a commercially available FTIR (Fourier Transform Infrared) emission spectrometer and a frequency-modulation differential-absorption LIDAR (FM-DIAL) system being developed at PNNL. To provide environmental protection for these systems, a large, well insulated, temperature controlled trailer was specified and procured. While the FTIR system was field-ready, the FM-DIAL system required many modifications to prepare for field deployment. This document provides an overview of the FTIR system, summarizes the modifications made to the FM-DIAL system, and describes the salient features of the remote systems trailer.
Date: October 1, 2002
Creator: Hatchell, Brian K.; Harper, Warren W.; Batishko, Charles R.; Johnson, Timothy J.; Sheen, David M.; Stewart, Timothy L. et al.
Partner: UNT Libraries Government Documents Department

Progress Report on Frequency - Modulated Differential Absorption Lidar

Description: Modeling done at Pacific Northwest National Laboratory (PNNL) in FY2000 predicted improved sensitivity for remote chemical detection by differential absorption lidar (DIAL) if frequency-modulated (FM) lasers were used. This improved sensitivity results from faster averaging away of speckle noise and the recently developed quantum cascade (QC) lasers offer the first practical method for implementing this approach in the molecular fingerprint region of the infrared. To validate this model prediction, a simple laboratory bench FM-DIAL system was designed, assembled, tested, and laboratory-scale experiments were carried out during FY2001. Preliminary results of the FM DIAL experiments confirm the speckle averaging advantages predicted by the models. In addition, experiments were performed to explore the use of hybrid QC - CO2 lasers for achieving sufficient frequency-modulated laser power to enable field experiments at longer ranges (up to one kilometer or so). This approach will allow model validation at realistic ranges much sooner than would be possible if one had to first develop master oscillator - power amplifier systems utilizing only QC devices. Amplification of a QC laser with a CO2 laser was observed in the first hybrid laser experiments, but the low gain and narrow linewidth of the CO2 laser available for these experiments prevented production of a high-power FM laser beam.
Date: December 15, 2001
Creator: Cannon, Bret D.; Harper, Warren W.; Myers, Tanya L.; Taubman, Matthew S.; Williams, Richard M. & Schultz, John F.
Partner: UNT Libraries Government Documents Department

Long Wave Infrared Cavity Enhanced Sensors

Description: The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) task is to explore ultra-sensitive spectroscopic chemical sensing techniques and apply them to detecting proliferation of weapons of mass destruction (WMD). Our primary application is detecting signatures of WMD production, but LWIR CES techniques are also capable of detecting chemical weapons. The LWIR CES task is concerned exclusively with developing novel point sensors; stand-off detection is addressed by other PNNL tasks and projects. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on LWIR CES sensor development.
Date: December 1, 2005
Creator: Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Munley, John T.; Nguyen, Vinh T. et al.
Partner: UNT Libraries Government Documents Department

FY 2005 Infrared Photonics Final Report

Description: Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.
Date: December 1, 2005
Creator: Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K. et al.
Partner: UNT Libraries Government Documents Department