27 Matching Results

Search Results

Advanced search parameters have been applied.

Laboratory-Scale Bismuth Phosphate Extraction Process Simulation To Track Fate of Fission Products

Description: Recent field investigation that collected and characterized vadose zone sediments from beneath inactive liquid disposal facilities at the Hanford 200 Areas show lower than expected concentrations of a long-term risk driver, Tc-99. Therefore laboratory studies were performed to re-create one of the three processes that were used to separate the plutonium from spent fuel and that created most of the wastes disposed or currently stored in tanks at Hanford. The laboratory simulations were used to compare with current estimates based mainly on flow sheet estimates and spotty historical data. Three simulations of the bismuth phosphate precipitation process show that less that 1% of the Tc-99, Cs-135/137, Sr-90, I-129 carry down with the Pu product and thus these isotopes should have remained within the metals waste streams that after neutralization were sent to single shell tanks. Conversely, these isotopes should not be expected to be found in the first and subsequent cycle waste streams that went to cribs. Measurable quantities (~20 to 30%) of the lanthanides, yttrium, and trivalent actinides (Am and Cm) do precipitate with the Pu product, which is higher than the 10% estimate made for current inventory projections. Surprisingly, Se (added as selenate form) also shows about 10% association with the Pu/bismuth phosphate solids. We speculate that the incorporation of some Se into the bismuth phosphate precipitate is caused by selenate substitution into crystal lattice sites for the phosphate. The bulk of the U daughter product Th-234 and Np-237 daughter product Pa-233 also associate with the solids. We suspect that the Pa daughter products of U (Pa-234 and Pa-231) would also co-precipitate with the bismuth phosphate induced solids. No more than 1 % of the Sr-90 and Sb-125 should carry down with the Pu product that ultimately was purified. Thus the current scheme used to estimate where fission ...
Date: February 28, 2007
Creator: Serne, R. JEFFREY; Lindberg, Michael J.; Jones, Thomas E.; Schaef, Herbert T. & Krupka, Kenneth M.
Partner: UNT Libraries Government Documents Department

Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

Description: Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi ...
Date: October 1, 2008
Creator: Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T. & Bradley, Donald J.
Partner: UNT Libraries Government Documents Department

Tier II Analysis of Vadose Zone Sediments from UPRS 200-E-81 and 200-E-86

Description: The overall goals of the Tank Farm Vadose Zone Project, led by Washington River Protection Solutions, are to define risks from past and future single-shell tank farm activities; identify and evaluate the efficacy of interim measures; and aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas (WMAs). To meet the investigative goals of the Tank Farm Vadose Zone Project, the Environmental Sciences Laboratory performed geochemical analyses on vadose zone sediments collected within Waste Management Area C. Tier one analyses of UPR-200-E-86, which includes direct push probe holes C5952, C5958 and C5960, were performed between 3/25/08 and 4/14/08. Preliminary results were presented to CH2M Hill Hanford Group on 6/5/08. As a result of the tier one investigations, further tier two analyses were requested. Tier two investigations include particle size and mineralogy analyses on samples collected between 80 to 120 feet below ground surface that were found to contain high concentrations of chloride and sulfate. Tier one analyses on sediments retrieved near UPR-200-E-81, direct push probe hole C6394, were performed between 6/20/08 and 7/22/08. Preliminary results of the tier one analyses were presented on 8/15/08. As a result of the tier one investigations, further tier two analyses were requested. Tier two analyses include determining whether U-236 exists in samples at approximately 42 feet below the ground surface. Confirmation of U-236 will determine whether the U-238 seen in the leaches performed on samples at that depth is a result of contamination and not from leaching natural uranium. Using the water and acid extract U-238 concentrations from the tier one analysis, equilibrium Kd values were requested to be calculated. Additional tier two analysis ...
Date: April 1, 2009
Creator: Valenta, Michelle M.; Geiszler, Keith N.; Bjornstad, Bruce N.; Schaef, Herbert T. & Brown, Christopher F.
Partner: UNT Libraries Government Documents Department

Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

Description: This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.
Date: June 18, 2010
Creator: Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W. & Schaef, Herbert T.
Partner: UNT Libraries Government Documents Department

Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

Description: This report was revised in May 2007 to correct values in Section 3.4.1.7, second paragraph, last sentence; 90Sr values in Tables 3.22 and 3.32; and 99Tc values Table 4.3 and in Chapter 5. In addition, the tables in Appendix F were updated to reflect corrections to the 90Sr values. The rest of the text remains unchanged from the original report issued in May 2005. CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contam¬inants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL.
Date: May 23, 2007
Creator: Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F. & Schaef, Herbert T.
Partner: UNT Libraries Government Documents Department

Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

Description: The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.
Date: September 1, 2006
Creator: Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F. & Schaef, Herbert T.
Partner: UNT Libraries Government Documents Department

Hanford Tank 241-C-103 Residual Waste Contaminant Release Models and Supporting Data

Description: This report tabulates data generated by laboratory characterization and testing of three samples collected from tank C-103. The data presented here will form the basis for a release model that will be developed for tank C-103. These release models are being developed to support the tank risk assessments performed by CH2M HILL Hanford Group, Inc. for DOE.
Date: January 15, 2008
Creator: Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.; Schaef, Herbert T.; Geiszler, Keith N. et al.
Partner: UNT Libraries Government Documents Department

Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data

Description: This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.
Date: August 29, 2008
Creator: Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W. & Schaef, Herbert T.
Partner: UNT Libraries Government Documents Department

Hanford Tanks 241-C-203 and 241 C 204: Residual Waste Contaminant Release Model and Supporting Data

Description: This report was revised in May 2007 to correct 90Sr values in Chapter 3. The changes were made on page 3.9, paragraph two and Table 3.10; page 3.16, last paragraph on the page; and Tables 3.21 and 3.31. The rest of the text remains unchanged from the original report issued in October 2004. This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75 wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.
Date: May 23, 2007
Creator: Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F. & Schaef, Herbert T.
Partner: UNT Libraries Government Documents Department

Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

Description: As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.
Date: September 13, 2007
Creator: Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V. et al.
Partner: UNT Libraries Government Documents Department

Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment

Description: This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.
Date: February 1, 2001
Creator: McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O'Hara, Matthew J.; Rodriguez, Eugenio et al.
Partner: UNT Libraries Government Documents Department

Rhenium Uptake, as Analogue for Tc-99, by Steel Corrosion Products

Description: Static batch experiments were used to examine the sorption of dissolved perrhenate [Re(VII)], as a surrogate for pertechnetate [Tc(VII)], on corrosion products of A-516 carbon steel coupons contacted with synthetic groundwater or dilute water. After 109 days of contact time, the concentration of dissolved Re(VII) in the synthetic groundwater matrix decreased by approximately 26%; the dilute water matrix experienced a 99% decrease in dissolved Re(VII) over the same time period. Bulk XRD results for the corroded steel coupons showed that the corrosion products consisted primarily of maghemite, lepidocrocite, and goethite. Analyses of the coupons by SEM/EDS indicated that Re was present with the morphologically complex assemblages of Fe oxide/hydroxide corrosion products for samples spiked with the highest dissolved Re(VII) concentration (1.0 mmol/L) used for these experiments. Analyses of corroded steel coupons contacted with solutions containing 1.0 mmol/L Re(VII) by synchrotron-based methods confirmed the presence of Re sorbed with the corrosion product on the steel coupons. Analyses showed that the Re sorbed on these corroded coupons was in the +7 oxidation state, suggesting that the Re(VII) uptake mechanism did not involve reduction of Re to a lower oxidation state, such as +4. The results of our studies using Re(VII) as an analogue for Tc(VII)-99 suggest that Tc(VII)-99 would also be sorbed with steel corrosion products and that the inventory of Tc(VII)-99 released from breached waste packages would be lower than what is now conservatively estimated.
Date: April 30, 2006
Creator: Krupka, Kenneth M.; Brown, Christopher F.; Schaef, Herbert T.; Heald, Steve M.; Valenta, Michelle M. & Arey, Bruce W.
Partner: UNT Libraries Government Documents Department

Low-Activity Waste Glass Studies: FY2000 Summary Report

Description: Over 200 single-pass flow-through experiments were completed with LAWABP1 glass, the reference glass for the 2001 Immobilized Low-Activity Waste Performance Assessment. These data provided the kinetic rate law parameters and Na ion-exchange rate needed to conduct long-term performance analyses using the reactive chemical transport code STORM. Pressurized unsaturated flow (PUF) experiments with five prototypic LAW glasses were also performed. The PUF test provides a means to dramatically accelerate the weathering process in a simulated vadose zone environment. The performance of these five next generation LAW glasses in the PUF test (and other accelerated tests) improved dramatically from earlier glass compositions that were being developed by BNFL, Inc. No autocatalytic corrosion rate accelerations were observed in tests that were conducted for over 1 year. SPFT and PUF experiments were run with a commercial humic acid solution, 25 to 50 times more concentrated than expected in Hanford vadose zone pore water. No difference in glass dissolution rate versus the rate measured in deionized water could be detected within experimental error. Initial development and testing of a parallelized lattice-Boltzmann method for solving reactive chemical transport problems in complex geometries was completed. This method is being examined as a means to dramatically decrease the computational time required to solve complex multidimensional reactive transport problems needed to predict long-term radionuclide release rates from LAW glasses. The results showed linear speedup behavior with number of processors for a simple test problem. Additional development and testing of the model on more realistic and complex ILAW disposal problems is planned for FY01.
Date: January 2, 2001
Creator: McGrail, Bernard P.; Icenhower, Jonathan P.; Martin, Paul F.; Rector, David R.; Schaef, Herbert T.; Rodriguez, Elsa A. et al.
Partner: UNT Libraries Government Documents Department

Characterization of 200-UP-1 Aquifer Sediments and Results of Sorption-Desorption Tests Using Spiked Uncontaminated Groundwater

Description: Core characterization showed only 4 out of 13 core liner samples were intact samples and that the others were slough material. The intact samples showed typical Ringold Unit E characteristics such as being dominated by gravel and sand. Moderately reducing conditions are inferred in some core from borehole C4299. This reducing condition was caused by the hard tool process used to drill the wells. One core showed significant presence of ferric iron oxide/clay coatings on the gravels. There were no highly contaminated sediments found in the cores from the three new boreholes in UP-1 operable unit, especially for uranium. The presence of slough and ''flour'' caused by hard tooling is a serious challenge to obtaining field relevant sediments for use in geochemical experiments to determine the adsorption-desorption tendencies of redox sensitive elements such as uranium. The adsorption of COCs on intact Ringold Formation sediments and Fe/clay coatings showed that most of the anionic contaminants [Tc(VII), Se(VI), U(VI), Cr(VI), and I(-I)] did not adsorbed very well compared to cationic [Np(V), Sr(II), and Cs(I)] radionuclides. The high hydrous iron oxide content in Fe/clay coatings caused the highest Kd values for U and Np, suggesting these hydrous oxides are the key solid adsorbent in the sediments. Enhanced adsorption behavior for Tc, and Cr and perhaps Se on the sediments was considered an ?artifact? result caused by the induced reducing conditions from the hard tool drilling. Additional U(VI) adsorption Kd studies were performed on Ringold Formation sediments to develop more robust Kd data base for U. The <2 mm size separates of three UP-1 sediments showed a linear U(VI) adsorption isotherm up 1 ppm of total U(VI) concentration in solution. The additional U(VI) Kds obtained from varying carbonate concentration indicated that U(VI) adsorption was strongly influenced by the concentration of carbonate in solution. U(VI) ...
Date: November 16, 2005
Creator: Um, Wooyong; Serne, R JEFFREY.; Bjornstad, Bruce N.; Schaef, Herbert T.; Brown, Christopher F.; Legore, Virginia L. et al.
Partner: UNT Libraries Government Documents Department

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

Description: Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate
Date: September 1, 2007
Creator: McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B. et al.
Partner: UNT Libraries Government Documents Department

Investigation of Accelerated Casing Corrosion in Two Wells at Waste Management Area A-AX

Description: This report was revised in September 2008 to remove acid-extractable sodium data from Tables 3.13 and 3.14. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in August 2005. An overall goal of the Groundwater Performance Assessment Project, led by Pacific Northwest National Laboratory (PNNL) and per guidance in DOE Order 5400.1, includes characterizing and defining trends in the physical, chemical, and biological condition of the environment. To meet these goals, numerous Resource Conservation and Recovery Act (RCRA) monitoring wells have been installed throughout the Hanford Site. In 2003, it was determined that two RCRA monitoring wells (299-E24-19 and 299-E25-46) in Waste Management Area (WMA) A-AX failed due to rapid corrosion of the stainless steel casing over a significant length of the wells. Complete casing corrosion occurred between 276.6 and 277.7 feet below ground surface (bgs) in well 299- E24-19 and from 274.4 to 278.6 feet bgs in well 299-E25-46. CH2M HILL Hanford Group, Inc., asked scientists from PNNL to perform detailed analyses of vadose zone sediment samples collected in the vicinity of the WMA A-AX from depths comparable to those where the rapid corrosion occurred in hopes of ascertaining the cause of the rapid corrosion.
Date: September 11, 2008
Creator: Brown, Christopher F.; Serne, R. Jeffrey; Schaef, Herbert T.; Williams, Bruce A.; Valenta, Michelle M.; Legore, Virginia L. et al.
Partner: UNT Libraries Government Documents Department

Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste

Description: This report describes the advances that have been made over the past two years in testing and characterizing waste material in Hanford tanks.
Date: November 4, 2005
Creator: Deutsch, William J.; Krupka, Kenneth M.; Cantrell, Kirk J.; Brown, Christopher F.; Lindberg, Michael J.; Schaef, Herbert T. et al.
Partner: UNT Libraries Government Documents Department

The Status of Radiation Damage Experiments

Description: Experiments have been on-going for about two years to determine the effects that radiation damage have on the physical and chemical properties of candidate titanate ceramics for the immobilization of plutonium. We summarize the results of these experiments in this document.
Date: November 20, 2001
Creator: Strachan, Denis M.; Scheele, Randall D.; Icenhower, Jonathan P.; Kozelisky, Anne E.; Sell, Richard L.; Legore, Virginia L. et al.
Partner: UNT Libraries Government Documents Department

Laboratory Testing of Bulk Vitrified Low-Activity Waste Forms to Support the 2005 Integrated Disposal Facility Performance Assessment

Description: The purpose of this report is to document the results from laboratory testing of the bulk vitri-fied (BV) waste form that was conducted in support of the 2005 integrated disposal facility (IDF) performance assessment (PA). Laboratory testing provides a majority of the key input data re-quired to assess the long-term performance of the BV waste package with the STORM code. Test data from three principal methods, as described by McGrail et al. (2000a; 2003a), are dis-cussed in this testing report including the single-pass flow-through test (SPFT) and product con-sistency test (PCT). Each of these test methods focuses on different aspects of the glass corrosion process. See McGrail et al. (2000a; 2003a) for additional details regarding these test methods and their use in evaluating long-term glass performance. In addition to evaluating the long-term glass performance, this report discusses the results and methods used to provided a recommended best estimate of the soluble fraction of 99Tc that can be leached from the engineer-ing-scale BV waste package. These laboratory tests are part of a continuum of testing that is aimed at improving the performance of the BV waste package.
Date: June 30, 2006
Creator: Pierce, Eric M.; McGrail, B. Peter; Bagaasen, Larry M.; Rodriguez, Elsa A.; Wellman, Dawn M.; Geiszler, Keith N. et al.
Partner: UNT Libraries Government Documents Department

Investigation of Accelerated Casing Corrosion in Two Wells at Waste Management Area A-AX

Description: The sidewall core samples from well 299-E24-19, which were comprised of a mixture of bentonite and silt lens material, had an average porewater chloride concentration of 376 mg/L. The sidewall core samples collected from well 299-E25-46 had calculated porewater chloride concentrations ranging from 1,200 to more than 10,000 mg/L. Clearly, the sidewall core samples tested were capable of generating porewaters with sufficient chloride concentrations to cause corrosion of the stainless steel well casing. Furthermore, analysis of the sidewall core samples yielded a clear relationship between chloride concentration and well casing corrosion. The sidewall core samples containing the greatest amount of chloride, 3000 {micro}g/g of sediment, came from the well that experienced the longest length of casing failure (4.2 feet in well 299-E25-46). All of the sidewall core samples tested from both decommissioned wells contained more chloride than the Wyoming bentonite test material. However, since chloride was present as a trace constituent in all of the sidewall core samples (less than 0.4 weight percent), it is possible that it could have been introduced to the system as a ''contaminant'' contained in the bentonite backfill material. Therefore, it is likely that chloride leached from the bentonite material and/or chloride carried by/as a constituent of the liquid waste stream caused the advanced well casing corrosion found at wells 299-E24-19 and 299-E25-46 via crevice corrosion and stress corrosion cracking. The sample of Enviroplug{trademark} No.8 high swelling Wyoming bentonite was characterized for its potential to generate porewaters of sufficient chlorinity to lead to accelerated corrosion of type 304L stainless steel. Overall, the bentonite sample had considerably high water extractable concentrations of sodium, chloride, fluoride, sulfate, and alkalinity (measured as calcium carbonate). Interpretation of the laboratory data indicated that the Wyoming bentonite test sample was capable of generating localized vadose zone porewater with chloride concentrations in ...
Date: August 29, 2005
Creator: Brown, Christopher F.; Serne, R JEFFREY.; Schaef, Herbert T.; Williams, Bruce A.; Valenta, Michelle M.; LeGore, Virginia L. et al.
Partner: UNT Libraries Government Documents Department

Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area

Description: This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).
Date: September 11, 2008
Creator: Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C. et al.
Partner: UNT Libraries Government Documents Department

Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

Description: This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.
Date: September 11, 2008
Creator: Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G. et al.
Partner: UNT Libraries Government Documents Department

Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

Description: This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.
Date: September 11, 2008
Creator: Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W. et al.
Partner: UNT Libraries Government Documents Department

Characterization of Vadose Zone Sediment: Borehole 299-E33-45 Near BX-102 in the B-BX-BY Waste Management Area

Description: This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.22. The data was removed due to potential contamination introduced during the acid extraction process. The remaining text is unchanged from the original report issued in 2002. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area B-BX-BY. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole 299-E33-45 installed northeast of tank BX-102.
Date: September 11, 2008
Creator: Serne, R. Jeffrey; Last, George V.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W. et al.
Partner: UNT Libraries Government Documents Department