11 Matching Results

Search Results

Advanced search parameters have been applied.

Massively Parallel Linear Stability Analysis with P_ARPACK for 3D Fluid Flow Modeled with MPSalsa

Description: We are interested in the stability of three-dimensional fluid flows to small dkturbances. One computational approach is to solve a sequence of large sparse generalized eigenvalue problems for the leading modes that arise from discretizating the differential equations modeling the flow. The modes of interest are the eigenvalues of largest real part and their associated eigenvectors. We discuss our work to develop an effi- cient and reliable eigensolver for use by the massively parallel simulation code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat transfer, and mass transfer with detailed bulk fluid and surface chemical reaction kinetics.
Date: October 13, 1998
Creator: Lehoucq, R.B. & Salinger, A.G.
Partner: UNT Libraries Government Documents Department

Wetting of a Chemically Heterogeneous Surface

Description: Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.
Date: November 20, 1998
Creator: Frink, L.J.D. & Salinger, A.G.
Partner: UNT Libraries Government Documents Department

MPSalsa a finite element computer program for reacting flow problems. Part 2 - user`s guide

Description: This manual describes the use of MPSalsa, an unstructured finite element (FE) code for solving chemically reacting flow problems on massively parallel computers. MPSalsa has been written to enable the rigorous modeling of the complex geometry and physics found in engineering systems that exhibit coupled fluid flow, heat transfer, mass transfer, and detailed reactions. In addition, considerable effort has been made to ensure that the code makes efficient use of the computational resources of massively parallel (MP), distributed memory architectures in a way that is nearly transparent to the user. The result is the ability to simultaneously model both three-dimensional geometries and flow as well as detailed reaction chemistry in a timely manner on MT computers, an ability we believe to be unique. MPSalsa has been designed to allow the experienced researcher considerable flexibility in modeling a system. Any combination of the momentum equations, energy balance, and an arbitrary number of species mass balances can be solved. The physical and transport properties can be specified as constants, as functions, or taken from the Chemkin library and associated database. Any of the standard set of boundary conditions and source terms can be adapted by writing user functions, for which templates and examples exist.
Date: September 1, 1996
Creator: Salinger, A.; Devine, K.; Hennigan, G. & Moffat, H.
Partner: UNT Libraries Government Documents Department

Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

Description: A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.
Date: January 1, 1998
Creator: Salinger, A.G.; Shadid, J.N. & Hutchinson, S.A.
Partner: UNT Libraries Government Documents Department

Calculating solvation forces and adsorption in complex geometries with a finite element-nonlocal density functional theory method

Description: Density functional theories (DFT) for inhomogeneous fluids have been used profitably to study the structure of fluids near surfaces, and to predict solvation forces, adsorption isotherm, and a variety of surface induced phase transitions. However, in nearly all cases, only geometries with 2 symmetry planes (e.g. fluid near a uniform planar interface or a fluid in a uniform cylindrical pore) have been considered. In this paper the authors discuss the generalization of the DFT to cases with either one or no symmetry planes. They present their computational approach, as well as results for charged cylindrical polyelectrolytes and planar surfaces with inhomogeneous chemistry.
Date: June 14, 1998
Creator: Douglas Frink, L.J. & Salinger, A.G.
Partner: UNT Libraries Government Documents Department

MP Salsa: a finite element computer program for reacting flow problems. Part 1--theoretical development

Description: The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.
Date: May 1, 1996
Creator: Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D. & Salinger, A.G.
Partner: UNT Libraries Government Documents Department

Utilizing object-oriented design to build advanced optimization strategies with generic implementation

Description: the benefits of applying optimization to computational models are well known, but their range of widespread application to date has been limited. This effort attempts to extend the disciplinary areas to which optimization algorithms may be readily applied through the development and application of advanced optimization strategies capable of handling the computational difficulties associated with complex simulation codes. Towards this goal, a flexible software framework is under continued development for the application of optimization techniques to broad classes of engineering applications, including those with high computational expense and nonsmooth, nonconvex design space features. Object-oriented software design with C++ has been employed as a tool in providing a flexible, extensible, and robust multidisciplinary toolkit with computationally intensive simulations. In this paper, demonstrations of advanced optimization strategies using the software are presented in the hybridization and parallel processing research areas. Performance of the advanced strategies is compared with a benchmark nonlinear programming optimization.
Date: August 1, 1996
Creator: Eldred, M.S.; Hart, W.E.; Bohnhoff, W.J.; Romero, V.J.; Hutchinson, S.A. & Salinger, A.G.
Partner: UNT Libraries Government Documents Department

Toward parallel, adaptive mesh refinement for chemically reacting flow simulations

Description: Adaptive numerical methods offer greater efficiency than traditional numerical methods by concentrating computational effort in regions of the problem domain where the solution is difficult to obtain. In this paper, the authors describe progress toward adding mesh refinement to MPSalsa, a computer program developed at Sandia National laboratories to solve coupled three-dimensional fluid flow and detailed reaction chemistry systems for modeling chemically reacting flow on large-scale parallel computers. Data structures that support refinement and dynamic load-balancing are discussed. Results using uniform refinement with mesh sequencing to improve convergence to steady-state solutions are also presented. Three examples are presented: a lid driven cavity, a thermal convection flow, and a tilted chemical vapor deposition reactor.
Date: December 1, 1997
Creator: Devine, K.D.; Shadid, J.N.; Salinger, A.G. Hutchinson, S.A. & Hennigan, G.L.
Partner: UNT Libraries Government Documents Department

Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors

Description: Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.
Date: December 1, 1997
Creator: Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D. & Moffat, H.K.
Partner: UNT Libraries Government Documents Department

MPSalsa Version 1.5: A Finite Element Computer Program for Reacting Flow Problems: Part 1 - Theoretical Development

Description: The theoretical background for the finite element computer program, MPSalsa Version 1.5, is presented in detail. MPSalsa is designed to solve laminar or turbulent low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow (with auxiliary turbulence equations), heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solve coupled multiple Poisson or advection-diffusion-reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMK3N, respectively. The code employs unstructured meshes, using the EXODUS II finite element database suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec. solver library.
Date: January 1, 1999
Creator: Devine, K.D.; Hennigan, G.L.; Hutchinson, S.A.; Moffat, H.K.; Salinger, A.G.; Schmidt, R.C. et al.
Partner: UNT Libraries Government Documents Department