10 Matching Results

Search Results

Advanced search parameters have been applied.

Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

Description: The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.
Date: September 20, 2012
Creator: Saiers, James E.
Partner: UNT Libraries Government Documents Department

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Description: Our research is guided by an EMSP objective to improve conceptual and predictive models of contaminant movement in vadose-zone environments. As described in the report National Roadmap for Vadose-Zone Science and Technology [DOE, 2001], soil-water colloids are capable of adsorbing contaminants, such as radionuclides and metals, and facilitating their migration through the vadose zone and towards groundwater reservoirs. Our research centers on advancing understanding of this phenomenon. In particular, we are combining mathematical modeling with laboratory experimentation at pore and column scales to (1) elucidate the effects of porewater-flow transients on colloid mobilization in unsaturated porous media; (2) explore the sensitivity of colloid deposition rates to changes in porewater chemistry and colloid mineralogy; (3) develop mathematical models appropriate for simulating colloid mobilization, transport, and deposition under both steady-flow and transient-flow conditions; (4) identify mechanisms that govern mineral-colloid mobilization and deposition in unsaturated porous media; (5) quantify the effects of mineral-grain geometry and surface roughness on colloid-filtration rates; and (6) evaluate the influences of colloids on the transport of strontium and cesium (i.e., DOE-contaminants-of-concern) through soils and sediments.
Date: June 1, 2005
Creator: Saiers, James & Ryan, Joseph
Partner: UNT Libraries Government Documents Department

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Description: Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloid-associated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments – the column and visualization experiments with colloids and the experiments with radionuclides – were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide transport through the vadose zone.
Date: June 28, 2006
Creator: Saiers, James
Partner: UNT Libraries Government Documents Department

The Role of Natural Organic Matter and Mineral Colloids in the Transport of Contaminants through Heterogeneous Vadose-Zone Environments

Description: Our research was guided by a key objective of the Environmental Management Science Program (EMSP), which is to improve conceptual and predictive models for contaminant movement in complex vadose zone environments. In this report, increases in the understanding of colloidcontaminant interactions, colloid mobilization, and colloid deposition within unsaturated soils are cited as requisite needs for predicting contaminant fate and distribution in the vadose zone. We addressed these needs by pursuing three key goals: 1. Identify the mechanisms that govern OM and mineral-colloid reaction and transport in heterogeneous, unsaturated porous media; 2. Quantify the role of OM and mineral colloids in scavenging and facilitating the transport of contaminants of concern to DOE; and 3. Develop and test a mathematical model suitable for simulating the movement of OM- and colloid-associated contaminants through heterogeneous, unsaturated porous media.
Date: January 31, 2009
Creator: Saiers, James & Ryan, Joseph
Partner: UNT Libraries Government Documents Department

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Description: We are investigating the role of colloids in the movement of radionuclides and metals through water unsaturated porous media. This research is guided by a key objective of the Environmental Management Science Program (EMSP), which is to improve conceptual and predictive models for contaminant movement in complex vadose zone environments. In the report entitled National Roadmap for Vadose Zone Science and Technology [DOE, 2001], increases in the understanding of colloid-contaminant interactions, colloid mobilization, and colloid deposition within unsaturated soils are cited as requisite needs for predicting contaminant fate and distribution in the vadose zone. We seek to address these needs by pursuing three overarching goals: (1) identify the mechanisms that govern colloid mobilization, transport, and deposition within unsaturated porous media; (2) quantify the role of colloids in scavenging and facilitating the transport of contaminants; and (3) develop and test a mathematical model suitable for simulating the movement of colloid-associated radionuclides and metals through variably saturated porous media.
Date: June 1, 2003
Creator: Saiers, James E.
Partner: UNT Libraries Government Documents Department

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Description: We are investigating the role of colloids in the movement of radionuclides through water unsaturated porous media. This research is guided by a key objective of the Environmental Management Science Program (EMSP), which is to improve conceptual and predictive models for contaminant movement in complex vadose zone environments. In the report entitled National Roadmap for Vadose Zone Science and Technology [DOE, 2001], increases in the understanding of colloid-contaminant interactions, colloid mobilization, and colloid deposition within unsaturated soils are cited as requisite needs for predicting contaminant fate and distribution in the vadose zone. We seek to address these needs by pursuing three overarching goals: (1) identify the mechanisms that govern colloid mobilization, transport, and deposition within unsaturated porous media; (2) quantify the role of colloids in scavenging and facilitating the transport of radionuclides; and (3) develop and test a mathematical model suitable for simulating the movement of colloid-associated radionuclides through variably saturated porous media.
Date: June 1, 2003
Creator: Saiers, James & Ryan, Joseph
Partner: UNT Libraries Government Documents Department

Containment of Toxic Metals and Radionuclides in Porous and Fractured

Description: The purpose of this research is to provide an improved understanding and predictive capability of the mechanisms that allow metal-reducing bacteria to be effective in the bioremediation of subsurface environments contaminated with toxic metals and radionuclides. The study is motivated by the likelihood that subsurface microbial activity can effectively alter the redox state of toxic metals and radionuclides so that they are immobilized for long time periods. Our objectives are to (1) develop an improved understanding of the rates and mechanisms of competing geochemical oxidation and microbiological reduction reactions that govern the fate and transport of redox-sensitive metals and radionuclides in the subsurface, and (2) quantify the conditions that optimize the microbial reduction of toxic metals and radionuclides, for the purpose of contaminant containment and remediation in heterogeneous systems that have competing geochemical oxidation, sorption, and organic ligands. The overall goal of this project is to use basic research to develop a cost effective remediation strategy that employs in situ contaminant immobilization. Specifically, we will develop active biowall technologies to contain priority EM contaminant plumes in groundwater.
Date: June 1, 1999
Creator: Jardine, Philip M.; Saiers, James & Fendorf, Scott E.
Partner: UNT Libraries Government Documents Department

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

Description: Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloidassociated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments – the column and visualization experiments with colloids and the experiments with radionuclides – were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide transport through the vadose zone.
Date: July 2, 2006
Creator: Saiers, James & Ryan, Joseph
Partner: UNT Libraries Government Documents Department

Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminants Transport in the Vadose Zone

Description: During the past year (June 2003 to June 2004), work at Yale has centered on investigating the influences of porewater pH, flow transients, and the presence of natural organic matter (NOM) on the deposition and mobilization of clay colloids (kaolinite and illite) within columns packed with unsaturated porous media. The experiments on pH and flow-transient effects were described in our First-Term Progress Report (which covered the initial 18 months of the study) and will not be repeated here. More recent experiments on the role of NOM in colloid transport proved equally as interesting. Even at porewater concentrations as low as 0.2 mg/L, soil-humic acid substantially lowered clay-colloid deposition rates compared to the case in which soil-humic acid was absent from the porewater. We attribute this to adsorption of the humic acid to the positively charged edge sites of the clay colloids, which effectively reduced the colloid affinity for negatively charged air- and solid-water interfaces. Comparison of the results of the column experiments to calculations of a new mathematical model has sharpened our inferences regarding mechanisms that govern the rate-limited deposition and mobilization of colloids. We are testing these inferences by carrying out flow-and-transport visualization experiments. We have constructed a semi-transparent representation of a porous medium, consisting of a rectangular parallel-plate chamber that encloses 3-5 layers of uniformly sized sand grains. Ceramic plates fused to the ends of the chamber maintain the capillary tension and syringe pumps (located at the inlet and outlet ends) regulate the flow of water and colloids through the partially saturated sand. By placing the chamber beneath a microscope, we can examine the distribution of colloids between air-water and solid-water interfaces, directly measure the kinetics of deposition onto these interfaces, and observe the mechanisms that contribute to the release of immobile colloids. To date, we have used ...
Date: June 15, 2003
Creator: Saiers, James E. & Ryan, Joseph
Partner: UNT Libraries Government Documents Department

Understanding the Subsurface Reactive Transport of Transuranic Contaminants at DOE Sites

Description: Our primary hypothesis is that actinides can interact with surfaces in fundamentally different ways than other metals, metalloids, and oxyanions and that this fundamental difference requires new approaches to studying and modeling transuranic sorption to minerals and geomedia. This project supports a key mission of the SBR program to develop sufficient scientific understanding such that DOE sites will be able to incorporate coupled physical, chemical, and biological processes into decision making for environmental management and long-term stewardship, while also supporting DOE’s commitment to education, training, and collaboration with DOE user facilities.
Date: December 20, 2013
Creator: Barnett, Mark O.; Albrecht-Schmitt, Thomas E.; Saiers, James E. & Shuh, David K.
Partner: UNT Libraries Government Documents Department