## Relativistic many-body calculations of electric-dipole lifetimes, rates, and oscillator strengths of Delta(n) = 0 transitions between 3l^-1 4l' states in Ni-like ions

Description:
Transition rates, oscillator strengths, and line strengths are calculated for electric-dipole (E1) transitions between odd-parity 3s{sup 2}3p{sup 6}3d{sup 9}4{ell}{sub 2}, 3s{sup 2}3p{sup 5}3d{sup 10}4{ell}{sub 2}, and 3s3p{sup 6}3d{sup 10}4{ell}{sub 1} states and even-parity 3s{sup 2}3p{sup 6}3d{sup 9}4{ell}{sub 2}, 3s{sup 2}3p{sup 5}3d{sup 10}4{ell}{sub 1}, and 3s3p{sup 6}3d{sup 10}4{ell}{sub 2} (with 4{ell}{sub 1} = 4p; 4f and 4{ell}{sub 2} = 4s; 4d) in Ni-like ions with the nuclear charges ranging from Z = 34 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10} Dirac-Fock potential. First-order RMBPT is used to obtain intermediate coupling coefficients and second-order RMBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second-order E1 matrix elements to ensure the gauge independence of transition amplitudes. Transition energies used in the calculation of oscillator strengths and transition rates are from second-order RMBPT. Lifetimes of the 3s{sup 2}3p{sup 6}3d{sup 9}4d levels are given for Z = 34-100. Transition rates, line strengths, and oscillator strengths are compared with critically evaluated experimental values and with results from other recent calculations. These atomic data are important in modeling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.

Date:
January 5, 2007

Creator:
Safronova, U I; Safronova, A S & Beiersdorfer, P

Item Type:
Refine your search to only
Article

Partner:
UNT Libraries Government Documents Department