8 Matching Results

Search Results

Advanced search parameters have been applied.

An advanced unmanned vehicle for remote applications

Description: An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.
Date: March 1, 1998
Creator: Pletta, J.B. & Sackos, J.
Partner: UNT Libraries Government Documents Department

Automated Geometric Model Builder Using Range Image Sensor Data: Final Acquistion

Description: This report documents a data collection where we recorded redundant range image data from multiple views of a simple scene, and recorded accurate survey measurements of the same scene. Collecting these data was a focus of the research project Automated Geometric Model Builder Using Range Image Sensor Data (96-0384), supported by Sandia's Laboratory-Directed Research and Development (LDRD) Program during fiscal years 1996, 1997, and 1998. The data described here are available from the authors on CDROM, or electronically over the Internet. Included in this data distribution are Computer-Aided Design (CAD) models we constructed from the survey measurements. The CAD models are compatible with the SolidWorks 98 Plus system, the modern Computer-Aided Design software system that is central to Sandia's DeskTop Engineering Project (DTEP). Integration of our measurements (as built) with the constructive geometry process of the CAD system (as designed) delivers on a vision of the research project. This report on our final data collection will also serve as a final report on the project.
Date: February 1, 1999
Creator: Diegert, C. & Sackos, J.
Partner: UNT Libraries Government Documents Department

Scannerless range imaging with a square wave

Description: Scannerless range imaging (SRI) is a unique approach to three dimensional imaging without scanners. SRI does, however, allow a more powerful light source to be used as compared to conventional Laser Radar (LADAR) systems due to the speed of operation associated with this staring system. As a result, a more efficient method of operation was investigated. As originally conceived, SRI transmits a continuous intensity modulated sinusoidal signal; however, a square wave driver is more energy efficient than a sinusoidal driver. In order to take advantage of this efficiency, a square wave operational methodology was investigated. As a result, four image frames are required for the extraction of range using a square wave to unambiguously resolve all time delays within one time period compared to a minimum of three frames for the sinusoidal wave.
Date: April 1, 1995
Creator: Muguira, M.R.; Sackos, J.T. & Bradley, B.D.
Partner: UNT Libraries Government Documents Department

Building accurate geometric models from abundant range imaging information

Description: The authors define two simple metrics for accuracy of models built from range imaging information. They apply the metric to a model built from a recent range image taken at the Laser Radar Development and Evaluation Facility (LDERF), Eglin AFB, using a Scannerless Range Imager (SRI) from Sandia National Laboratories. They also present graphical displays of the residual information produced as a byproduct of this measurement, and discuss mechanisms that these data suggest for further improvement in the performance of this already impressive SRI.
Date: May 1, 1997
Creator: Diegert, C.; Sackos, J. & Nellums, R.
Partner: UNT Libraries Government Documents Department

The emerging versatility of a scannerless range imager

Description: Sandia National Laboratories is nearing the completion of the initial development of a unique type of range imaging sensor. This innovative imaging optical radar is based on an active flood-light scene illuminator and an image intensified CCD camera receiver. It is an all solid-state device (no moving parts) and offers significant size, performance, reliability, simplicity, and affordability advantages over other types of 3-D sensor technologies, including: scanned laser radar, stereo vision, and structured lighting. The sensor is based on low cost, commercially available hardware, and is very well suited for affordable application to a wide variety of military and commercial uses, including: munition guidance, target recognition, robotic vision, automated inspection, driver enhanced vision, collision avoidance, site security and monitoring, terrain mapping, and facility surveying. This paper reviews the sensor technology and its development for the advanced conventional munition guidance application, and discusses a few of the many other emerging applications for this new innovative sensor technology.
Date: April 1996
Creator: Sackos, J.; Bradley, B.; Nellums, B. & Diegert, C.
Partner: UNT Libraries Government Documents Department

Scannerless terrain mapper

Description: NASA-Ames Research Center, in collaboration with Sandia National Laboratories, is developing a Scannerless Terrain Mapper (STM) for autonomous vehicle guidance through the use of virtual reality. The STM sensor is based on an innovative imaging optical radar technology that is being developed by Sandia National Laboratories. The sensor uses active flood-light scene illumination and an image intensified CCD camera receiver to rapidly produce and record very high quality range imagery of observed scenes. The STM is an all solid-state device (containing no moving parts) and offers significant size, performance, reliability, simplicity, and affordability advantages over other types of 3-D sensor technologies, such as scanned laser radar, stereo vision, and structured lighting. The sensor is based on low cost, commercially available hardware, and is very well suited for affordable application to a wide variety of military and commercial uses, including: munition guidance, target recognition, robotic vision, automated inspection, driver enhanced vision, collision avoidance, site security and monitoring, and facility surveying. This paper reviews the sensor technology, discusses NASA`s terrain mapping applications, and presents results from the initial testing of the sensor at NASA`s planetary landscape simulator.
Date: September 1, 1996
Creator: Sackos, J.; Bradley, B.; Diegert, C.; Ma, P. & Gary, C.
Partner: UNT Libraries Government Documents Department

Range Imaging for Underwater Vision Enhancement

Description: This paper presents results from a series of preliminary tests to evaluate a scannerless range-imaging device as a potential sensory enhancement tool for divers and as a potential identification sensor for deployment on small unmanned underwater vehicles. The device, developed by Sandia National Laboratories, forms an image on the basis of point-to-point range to the target rather than an intensity map. The range image is constructed through a classical continuous wave phase detection technique in which the light source is amplitude modulated at radio frequencies. The receiver incorporates a gain-modulated image intensifier, and range information is calculated on the basis of the phase difference between the transmitted and reflected signal. The initial feasibility test at the Coastal Systems Station showed the device to be effective at imaging low-contrast underwater targets such as concertina wire. It also demonstrated success at imaging a 21-inch sphere at a depth of 10 feet in the water column through a wavy air-water interface.
Date: April 19, 1999
Creator: Rish, J.W.; Blume, B.; Nellums, B.; Sackos, J.; Foster, J. & Wood, J.L.
Partner: UNT Libraries Government Documents Department

A low-cost, high-resolution, video-rate imaging optical radar

Description: Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.
Date: April 1, 1998
Creator: Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F.; Grantham, J.W. & Monson, T.
Partner: UNT Libraries Government Documents Department