16 Matching Results

Search Results

Advanced search parameters have been applied.

FBR pellet fabrication - density and dimensional control

Description: The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO/sub 2/-UO/sub 2/) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables.
Date: January 1, 1982
Creator: Rasmussen, D.E. & Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Preirradiation microstructural characterization of FFTF mixed oxide fuel

Description: Charts, drawings, graphs, and photographs are presented concerning the research program to evaluate potential for fuel to undergo densification during irradiation, to assure PuO/sub 2/ homogeneity in mixed oxide fuel, to provide data base for pre-/post-irradiation comparisons, and to evaluate effect of fuel fabrication conditions.
Date: January 1, 1981
Creator: Rasmussen, D.E. & Schaus, P.S.
Partner: UNT Libraries Government Documents Department

A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

Description: In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility ...
Date: September 29, 2006
Creator: SCHAUS, P.S.
Partner: UNT Libraries Government Documents Department

TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

Description: At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.
Date: July 21, 2006
Creator: SCHAUS, P.S.
Partner: UNT Libraries Government Documents Department

River Protection Project (RPP) Readiness to Proceed 2 Internal Independent Review Team Final Report

Description: This report describes the results of an independent review team brought in to assess CH2M HILL Hanford's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor.
Date: March 15, 2000
Creator: SCHAUS, P.S.
Partner: UNT Libraries Government Documents Department

River Protection Project (RPP) Readiness to Proceed 2 Internal Independent Review Team Final Report

Description: This report describes the results of an independent review team brought in to assess CH2M Hill Hanford Group's readiness and ability to support the RPP's move into its next major phase - retrieval and delivery of tank waste to the Privatization Contractor
Date: March 29, 2000
Creator: SCHAUS, P.S.
Partner: UNT Libraries Government Documents Department

Hanford Tanks Initiative risk management guide

Description: This project-specific Risk Management Guide describes the general approach and process being used by the HTI Project to manage risk associated with execution of the HTI mission. It includes the initial identification of risk and the quantification of its likelihood and severity of its consequences. It further addresses the formulation of risk mitigation plans, periodic statusing of the Risk Management List, and risk closure.
Date: October 29, 1997
Creator: Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Tank waste remediation system privatization phase 1 infrastructure project, systems engineering implementation plan

Description: This Systems Engineering Implementation Plan (SEIP) describes the processes, products, and organizational responsibilities implemented by Project W-519 to further define how the project`s mission, defined initially by the Tank Waste Remediation System Phase 1 Privatization Infrastructure Project W-503 Mission Analysis Report (Hoertkorn 1997), will be accomplished using guidance provided by the Tank Waste Remediation System Systems Engineering Management Plan (SEMP) (Peck 1998). This document describes the implementation plans for moving from a stated mission to an executable cost, schedule, and technical baseline and to help ensure its successful completion of those baselines.
Date: August 19, 1998
Creator: Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Hanford tanks initiative alternatives generation and analysis plan for AX tank farm closure basis

Description: The purpose of this document is: (1) to review the HTI Mission Analysis and related documents to determine their suitability for use in developing performance measures for AX Tank Farm closure, (2) to determine the completeness and representativeness of selected alternative closure scenarios, (3) to determine the completeness of current plans for development of tank end-state criteria, and (4) to analyze the activities that are necessary and sufficient to recommend the end-state criteria and performance measures for the AX Tank Farm and recommend activities not currently planned to support establishment of its end-state criteria.
Date: October 22, 1997
Creator: Schaus, P.S., Westinghouse Hanford, Richland, WA
Partner: UNT Libraries Government Documents Department

Hanford Tanks Initiative mission analysis report

Description: This mission analysis report for the Hanford Tanks Initiative (HTI) supports the Hanford Site`s Single-Shell Tank (SST) Waste Retrieval Program in its commitment to remove waste from the SSTs for treatment and final closure of the tanks. The results of the HTI will support the US Department of Energy`s (DOE) privatization of retrieval efforts. This report addresses the HTI problem statement: Alternative technologies to past practice sluicing (PPS) have not yet been demonstrated to remove the hard heel from a sluiced tank or to remove waste from a leaking SST. Nor have performance-based criteria for cleanout and closure been demonstrated to the degree necessary to validate them as technically and economically achievable. This report also defines the mission statement and mission boundaries; the known interfaces, both programmatic and project; the mission level requirements; the test and evaluation methodology; and measures of success.
Date: September 22, 1997
Creator: Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

Description: The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. The Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team Final Report and ...
Date: January 6, 1998
Creator: Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Hanford Tanks Initiative requirements and document management process guide

Description: This revision of the guide provides updated references to project management level Program Management and Assessment Configuration Management activities, and provides working level directions for submitting requirements and project documentation related to the Hanford Tanks Initiative (HTI) project. This includes documents and information created by HTI, as well as non-HTI generated materials submitted to the project.
Date: May 22, 1998
Creator: Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Tank waste remediation system privatization infrastructure program, configuration management implementation plan

Description: This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.
Date: August 18, 1998
Creator: Schaus, P.S.
Partner: UNT Libraries Government Documents Department

High-level waste program integration within the DOE complex

Description: Eleven major Department of Energy (DOE) site contractors were chartered by the Assistant Secretary to use a systems engineering approach to develop and evaluate technically defensible cost savings opportunities across the complex. Known as the complex-wide Environmental Management Integration (EMI), this process evaluated all the major DOE waste streams including high level waste (HLW). Across the DOE complex, this waste stream has the highest life cycle cost and is scheduled to take until at least 2035 before all HLW is processed for disposal. Technical contract experts from the four DOE sites that manage high level waste participated in the integration analysis: Hanford, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and West Valley Demonstration Project (WVDP). In addition, subject matter experts from the Yucca Mountain Project and the Tanks Focus Area participated in the analysis. Also, departmental representatives from the US Department of Energy Headquarters (DOE-HQ) monitored the analysis and results. Workouts were held throughout the year to develop recommendations to achieve a complex-wide integrated program. From this effort, the HLW Environmental Management (EM) Team identified a set of programmatic and technical opportunities that could result in potential cost savings and avoidance in excess of $18 billion and an accelerated completion of the HLW mission by seven years. The cost savings, schedule improvements, and volume reduction are attributed to a multifaceted HLW treatment disposal strategy which involves waste pretreatment, standardized waste matrices, risk-based retrieval, early development and deployment of a shipping system for glass canisters, and reasonable, low cost tank closure.
Date: March 1, 1998
Creator: Valentine, J.H.; Davis, N.R.; Malone, K. & Schaus, P.S.
Partner: UNT Libraries Government Documents Department

Fuel canister and blockage pin fabrication for SLSF Experiment P4. [LMFBR]

Description: As part of its fast breeder reactor safety research program, Argonne National Laboratory (ANL) has conducted an experiment (SLSF Experiment P4) to determine the extent of fuel-failure propagation resulting from the release of molten fuel from one or more heat-generating fuel canisters. The test conditions consisted of 37 full-length FTR fuel pins operating at FTR rated core nominal peak fuel/reduced coolant conditions. Thirty-four of the the fuel pins were prototypical FTR mixed-oxide fuel pins. The other three fuel pins were fabricated with a mid-core section having an enlarged canister containing fully enriched UO/sub 2/. Two of the canisters were cylindrical and one was fluted. The cylindrical canisters were designed to fail and release molten fuel into the 37-pin fuel cluster at near full power.
Date: January 1, 1983
Creator: Rhude, H.V.; Folkrod, J.R.; Noland, R.A.; Schaus, P.S.; Benecke, M.W. & Delucchi, T.A.
Partner: UNT Libraries Government Documents Department