48 Matching Results

Search Results

Advanced search parameters have been applied.

High brightness potassium ion gun for the HIF neutralized transport experiment (NTX)

Description: The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. To focus a high intensity beam to a small spot requires a high brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce type diode. At the diode exit, an aperture with variable size provides the capability to vary the beam perveance and to significantly reduce the beam emittance. We shall report on the gun characterization including current density profile, phase space distributions and the control of electrons generated by the beam scraping at the aperture. Comparison with particle simulations using the EGUN code will be presented.
Date: May 1, 2003
Creator: Eylon, S.; Henestroza, E.; Roy, P.K. & Yu, S.S.
Partner: UNT Libraries Government Documents Department

Magnetic lattice for the HIF neutralized transport experiment (NTX)

Description: The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A pulsed magnetic four-quadrupole transport system for a 400 keV, 80 mA space charge dominated heavy ion beam has been designed, fabricated, tested, measured, and commissioned successfully for the Neutralized Transport Experiment (NTX). We present some generalized multipole decompositions of 3-D finite element calculations, and 2-D transient finite element simulations of eddy currents in the beam tube. Beam envelope calculations along the transport line were performed using superposition of individually 3-D calculated magnetic field maps. Revised quadrupole design parameters and features, plus fabrication and testing highlights are also presented. Magnetic field measurements were made using both Hall probes (low field DC) and inductive loop coil (high field pulsed). Magnet testing consisted of repetitive full current pulsing to determine reliability.
Date: May 1, 2003
Creator: Shuman, D.; Eylon, S.; Henestroza, E.; Roy, P.K.; Waldron, W.; Yu, S.S. et al.
Partner: UNT Libraries Government Documents Department

Comparison of experimental data and 3D simulations of ion beam neutralization from the neutralized transport experiment

Description: The Neutralized Transport Experiment (NTX) at Lawrence Berkeley National Laboratory has been designed to study the final focus and neutralization of high perveance ion beams for applications in heavy ion fusion (HIF) and high energy density physics (HEDP) experiments. Pre-formed plasmas in the last meter before the target of the scaled experiment provide a source of electrons which neutralize the ion current and prevent the space-charge induced spreading of the beam spot. NTX physics issues are discussed and experimental data is analyzed and compared with 3D particle-in-cell simulations. Along with detailed target images, 4D phase-space data of the NTX at the entrance of the neutralization region has been acquired. This data is used to provide a more accurate beam distribution with which to initialize the simulation. Previous treatments have used various idealized beam distributions which lack the detailed features of the experimental ion beam images. Simulation results are compared with NTX experimental measurements for 250 keV K{sup +} ion beams with dimensionless perveance of 1-7 x 10{sup -4}. In both simulation and experiment, the deduced beam charge neutralization is close to the predicted maximum value.
Date: September 22, 2004
Creator: Thoma, C.; Welch, D.R.; Yu, S.S.; Henestroza, E.; Roy, P.K.; Eylon, S. et al.
Partner: UNT Libraries Government Documents Department

Final focus system for high intensity beams

Description: The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The NTX final focus system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final focus lattice consists of four pulsed quadrupole magnets. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. We will present experimental results from NTX on beam envelope and phase space distributions, and compare these results with particle simulations using the particle-in-cell code WARP.
Date: May 1, 2003
Creator: Henestroza, E.; Bieniosek, F.M.; Eylon, S.; Roy, P.K. & Yu, S.S.
Partner: UNT Libraries Government Documents Department

Non-intercepting diagnostics for the HIF neutralized transport experiment

Description: The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high purveyance heavy ion beams. We are developing a non-destructive beam diagnostic system to characterize the ion beam during its operation. Ion beam space charge is sensed by measuring deflection of mono energetic electron passing transversely through the ion beam. In this diagnostic system an electron beam of a submillimeter size with 1-5 {micro}A current and 5-8 kV energy will be injected perpendicularly through the ion beam. The position and intensity of the deflected e-beam would be registered on a scintillator for optical analysis to characterize the ion beam. An electron beam of negligible space charge will be deflected at an angle that depends on the charge density and energy distribution of the ion beam along its trajectory. The ebeam current and energy are chosen such that its trajectory will be significantly perturbed without perturbing the ion beam. We present a progress report on this diagnostic system including the characterization of the electron gun, the design of the e-beam transport system, and a study of the scintillator and its associate electronics and photonic components.
Date: May 1, 2003
Creator: Roy, P.K.; Eylon, S.; Hannik, R.; Henestroza, E.; Ludvig, J.; Shuman, D. et al.
Partner: UNT Libraries Government Documents Department

Optical Faraday Cup for Heavy Ion Beams

Description: We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.
Date: June 25, 2007
Creator: Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K. & Yu, S.S.
Partner: UNT Libraries Government Documents Department

Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

Description: To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li{sup +} ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 {micro}s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance {approx}2 {pi}-mm-mrad. Here, lithium aluminosilicate ion sources, of {beta}-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 {micro}s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V{sup 3/2}. A space-charge limited beam density of {approx}1 mA/cm{sup 2} was measured at 1275 C temperature, after allowing a conditioning time of about {approx} 12 hours. Maximum emission limited beam current density of {ge} 1.8mA/cm{sup 2} was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 {+-} 7 C. These data demonstrate a constant, space-charge ...
Date: April 20, 2011
Creator: LBNL; Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A. & Waldron, W.
Partner: UNT Libraries Government Documents Department

Development of Li+ alumino-silicate ion source

Description: To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.
Date: April 21, 2009
Creator: Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A. et al.
Partner: UNT Libraries Government Documents Department

Commissioning Results of the Upgraded Neutralized Drift Compression Experiment

Description: Recent changes to the NDCX beamline offer the promise of higher charge compressed bunches (>15nC), with correspondingly large intensities (>500kW/cm2), delivered to the target plane for ion-beam driven warm dense matter experiments. We report on commissioning results of the upgraded NDCX beamline that includes a new induction bunching module with approximately twice the volt-seconds and greater tuning flexibility, combined with a longer neutralized drift compression channel.
Date: April 30, 2009
Creator: Lidia, S.M.; Roy, P.K.; Seidl, P.A.; Waldron, W.L. & Gilson, E.P.
Partner: UNT Libraries Government Documents Department

Neutralized transport of high intensity beams

Description: The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A converging ion beam at the exit of the final focus magnetic system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a ''plasma plug'', where electrons are extracted from a localized plasma in the upstream end of the drift section, and are then dragged along by the ion potential, as well as the ''volumetric plasma'', where neutralization is provided by the plasma laid down along the ion path, are both studied and their relative effects on the beam spot size are compared. Comparisons with 3-D PIC code predictions will also be presented.
Date: May 1, 2003
Creator: Henestroza, E.; Yu, S.S.; Eylon, S.; Roy, P.K.; Anders, A.; Sharp, W. et al.
Partner: UNT Libraries Government Documents Department

Diagnostics for intense heavy ion beams in the HIF-VNL

Description: Modern diagnostic techniques provide detailed information on beam conditions in injector, transport, and final focus experiments in the HIF-VNL. Parameters of interest include beam current, beam energy, transverse and longitudinal distributions, emittance, and space charge neutralization. Imaging techniques, based on kapton films and optical scintillators, complement and in some cases, may replace conventional techniques based on slit scans. Time-resolved optical diagnostics that provide 4-D transverse information on the experimental beams are in operation on the existing experiments. Current work includes a compact optical diagnostic suitable for insertion in transport lines, improved algorithms for optical data analysis and interpretation, a high-resolution electrostatic energy analyzer, and an electron beam probe. A longitudinal diagnostic kicker generates longitudinal space-charge waves that travel on the beam. Time of flight of the space charge waves and an electrostatic energy analyzer provide an absolute measure of the beam energy. Special diagnostics to detect secondary electrons and gases desorbed from the wall have been developed.
Date: June 11, 2004
Creator: Bieniosek, F.M.; Eylon, S.; Faltens, A.; Friedman, A.; Kwan, J.W.; Leitner, M.A. et al.
Partner: UNT Libraries Government Documents Department

Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

Description: Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.
Date: June 20, 2007
Creator: Sharp, W. M.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Molvik, A. W.; Vay, J.-L. et al.
Partner: UNT Libraries Government Documents Department

High Energy Density Physics Experiments With Intense Heavy Ion Beams

Description: The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.
Date: August 1, 2008
Creator: Bieniosek, F. M.; Henestroza, E.; Leitner, M.; Logan, B. G.; More, R. M.; Roy, P. K. et al.
Partner: UNT Libraries Government Documents Department

High Energy Density Physics Experiments With Intense Heavy Ion Beams

Description: The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.
Date: March 16, 2010
Creator: Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P. et al.
Partner: UNT Libraries Government Documents Department

Simulating Electron Clouds in High-Current Ion Accelerators withSolenoid Focusing

Description: Contamination from electrons is a concern for the solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons are produced directly by beam ions hitting lattice elements and intercepting diagnostics, or indirectly by ionization of desorbed neutral gas, and they are believed responsible for time dependence of the beam radius, emittance, and focal distance seen on the Solenoid Transport Experiment (STX) at Lawrence Berkeley National Laboratory. The electrostatic particle-in-cell code WARP has been upgraded to included the physics needed to simulate electron-cloud phenomena. We present preliminary self-consistent simulations of STX experiments suggesting that the observed time dependence of the beam stems from a complicated interaction of beam ions, desorbed neutrals, and electrons.
Date: September 20, 2006
Creator: Sharp, W.M.; Grote, D.P.; Cohen, R.H.; Friedman, A.; Vay, J.-L.; Seidl, P.A. et al.
Partner: UNT Libraries Government Documents Department

Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

Description: The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam.
Date: June 4, 2007
Creator: Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F. et al.
Partner: UNT Libraries Government Documents Department

Electrons in a Positive-Ion Beam with Solenoid or Quadrupole Magnet Transport

Description: The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam.
Date: June 1, 2007
Creator: Molvik, A W; Cohen, R H; Friedman, A; Covo, M K; Lund, S M; Sharp, W M et al.
Partner: UNT Libraries Government Documents Department

Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

Description: Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.
Date: June 29, 2007
Creator: Sharp, W M; Grote, D P; Cohen, R H; Friedman, A; Molvik, A W; Vay, J et al.
Partner: UNT Libraries Government Documents Department

PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II

Description: The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets.
Date: September 22, 2008
Creator: Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M. et al.
Partner: UNT Libraries Government Documents Department

DARHT 2 kA Cathode Development

Description: In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might ...
Date: March 9, 2009
Creator: Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B. et al.
Partner: UNT Libraries Government Documents Department

Results on intense beam focusing and neutralization from the neutralized beam experiment

Description: We have demonstrated experimental techniques to provide active neutralization for space-charge dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. We present measurements of current transmission, beam spot size as a function of axial position, beam energy and plasma source conditions. Detailed comparisons with theory are also presented.
Date: October 31, 2003
Creator: Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Bieniosek, F.M. et al.
Partner: UNT Libraries Government Documents Department

HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 3nd QUARTER 2009 MILESTONE REPORT: Upgrade plasma source configuration and carry out initial experiments. Characterize improvements in focal spot beam intensity

Description: Simulations suggest that the plasma density must exceed the beam density throughout the drift compression and focusing section in order to inhibit the space charge forces that would limit the spot size and beam intensity on the target. WDM experiments will therefore require plasma densities up to 10{sup 14}/cm{sup 3}, with the highest density in the last few centimeters before the target. This work was guided by the simulations performed for the FY09 Q1 milestone. This milestone has been met and we report results of modifications made to the NDCX beamline to improve the longitudinal and radial distribution of the neutralizing plasma in the region near the target plane. In Section 2, we review pertinent simulation results from the FY09 Q1 milestone. Section 3 describes the design, and beam measurements following installation, of a biased, self-supporting metal grid that produces neutralizing electrons from glancing interception of beam ions. Section 4 describes the design and initial testing of a compact Ferro-Electric Plasma Source (FEPS) that will remove the remaining 'exclusion zone' in the neutralizing plasma close to the target plane. Section 5 describes the modification of the beamline to decrease the gap between the FEPS section exit and the final focus solenoid (FFS). Section 6 presents a summary and conclusions.
Date: June 30, 2009
Creator: Lidia, S.; Anders, A.; Barnard, J.J.; Bieniosek, F.M.; Dorf, M.; Faltens, A. et al.
Partner: UNT Libraries Government Documents Department