16 Matching Results

Search Results

Advanced search parameters have been applied.

Novel Semi-Conductor Material Systems: Molecular Beam Epitaxial Growth and Characterization

Description: Semi-conductor industry relies heavily on silicon (Si). However, Si is not a direct-band gap semi-conductor. Consequently, Si does not possess great versatility for multi-functional applications in comparison with the direct band-gap III-V semi-conductors such as GaAs. To bridge this gap, what is ideally required is a semi-conductor material system that is based on silicon, but has significantly greater versatility. While sparsely studied, the semi-conducting silicides material systems offer great potential. Thus, I focused on the growth and structural characterization of ruthenium silicide and osmium silicide material systems. I also characterized iron silicon germanide films using extended x-ray absorption fine structure (EXAFS) to reveal phase, semi-conducting behavior, and to calculate nearest neighbor distances. The choice of these silicides material systems was due to their theoretically predicted and/or experimentally reported direct band gaps. However, the challenge was the existence of more than one stable phase/stoichiometric ratio of these materials. In order to possess the greatest control over the growth process, molecular beam epitaxy (MBE) has been employed. Structural and film quality comparisons of as-grown versus annealed films of ruthenium silicide are presented. Structural characterization and film quality of MBE grown ruthenium silicide and osmium silicide films via in situ and ex situ techniques have been done using reflection high energy electron diffraction, scanning tunneling microscopy, atomic force microscopy, cross-sectional scanning electron microscopy, x-ray photoelectron spectroscopy, and micro Raman spectroscopy. This is the first attempt, to the best of our knowledge, to grow osmium silicide thin films on Si(100) via the template method and compare it with the regular MBE growth method. The pros and cons of using the MBE template method for osmium silicide growth are discussed, as well as the structural differences of the as-grown versus annealed films. Future perspectives include further studies on other semi-conducting silicides material systems in terms ...
Date: December 2013
Creator: Elmarhoumi, Nader M.
Partner: UNT Libraries