3 Matching Results

Search Results

Advanced search parameters have been applied.

ALEGRA-HEDP simulations of the dense plasma focus.

Description: We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.
Date: September 1, 2009
Creator: Flicker, Dawn G.; Kueny, Christopher S. (Hewlett-Packard Company) & Rose, David V.
Partner: UNT Libraries Government Documents Department

Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

Description: This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.
Date: June 19, 2008
Creator: Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V. et al.
Partner: UNT Libraries Government Documents Department