2 Matching Results

Search Results

Advanced search parameters have been applied.

Understanding How Femtosecond Laser Waveguide Fabrication in Glasses Works

Description: In order to understand the physical processes associated with fs-laser waveguide writing in glass, the effects of the laser repetition rate, the material composition and feature size were studied. The resulting material changes were observed by collecting Raman and fluorescence spectra with a confocal microscope. The guiding behavior of the waveguides was evaluated by measuring near field laser coupling profiles in combination with white light microscopy. Waveguides and Bragg gratings were fabricated in fused silica using pulse repetition rates from 1 kHz to 1 MHz and a wide range of scan speeds and pulse energies. Two types of fluorescence were detected in fused silica, depending on the fabrication conditions. Fluorescence from self trapped exciton (E{prime}{sub {delta}}) defects, centered at 550 nm, were dominant for conditions with low total doses, such as using a 1 kHz laser with a scan speed of 20 {micro}m/s and pulse energies less than 1 {micro}J. For higher doses a broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed. Far fewer NBOHC defects were formed with the 1 MHz laser than with the kHz lasers possibly due to annealing of the defects during writing. We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings for all writing conditions. The magnitude of this increase in waveguides fabricated with a 1 MHz laser was nearly twice that of waveguides fabricated with a 1 kHz laser. Additional waveguides were fabricated in soda lime silicate glasses to assess the effects of changing the glass composition. These waveguides formed around, not inside the exposed regions. This is distinctly different from fused silica in which the waveguides are inside the exposed regions. A ...
Date: May 11, 2006
Creator: Reichman, W J
Partner: UNT Libraries Government Documents Department

A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

Description: Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.
Date: September 29, 2005
Creator: Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M et al.
Partner: UNT Libraries Government Documents Department