21 Matching Results

Search Results

Advanced search parameters have been applied.

Status Report on Phase Identification in Hanford Tank Sludges

Description: The U.S. Department of Energy plans to vitrify Hanford's underground storage tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.
Date: December 18, 2000
Creator: Rapko, Brian M. & Lumetta, Gregg J.
Partner: UNT Libraries Government Documents Department

Status Report on Phase Identification in Hanford Tank Sludges

Description: The U.S. Department of Energy plans to vitrify Hanford's underground storage tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.
Date: December 18, 2000
Creator: Rapko, Brian M. & Lumetta, Gregg J.
Partner: UNT Libraries Government Documents Department

Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

Description: This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30.
Date: September 9, 2002
Creator: Rapko, Brian M. & Vienna, John D.
Partner: UNT Libraries Government Documents Department

Alternative TRUEX-Based Pretreatment Processing of INEEL Sodium Bearing Waste

Description: The goals of this study were to demonstrate a selective complexant for separating mercury from the transuranic (TRU) elements in the transuranic extraction (TRUEX) process and to demonstrate alternative stripping methods to eliminate phosphorus-containing, actinide stripping agents during TRUEX processing. The work described in this report provides the basis for implementing an improved TRUEX-based flowsheet for processing INEEL sodium-bearing waste using only minor modifications to the current Idaho National Engineering and Environmental Laboratory (INEEL) flowsheet design.
Date: September 27, 2000
Creator: Rapko, Brian M.; Fiskum, Sandra K. & Lumetta, Gregg J.
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups ...
Date: June 15, 2005
Creator: Hay, Benjamin P. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.
Date: June 1, 2006
Creator: Hay, Benjamin P. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.
Date: June 15, 2005
Creator: Hay, Benjamin P. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

The SX Solver: A New Computer Program for Analyzing Solvent-Extraction Equilibria.

Description: A new computer program, the SX Solver, has been developed to analyze solvent-extraction equilibria. The program operates out of Microsoft Excel{reg_sign} and uses the built-in ''Solver'' function to minimize the sum of the square of the residuals between measured and calculated distribution coefficients. The extraction of nitric acid by tributyl phosphate has been modeled to illustrate the program's use.
Date: January 8, 1999
Creator: Lumetta, Gregg J; McNamara, Bruce K & Rapko, Brian M
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM3) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific objectives of this project are: to further understand the structural and energetic aspects of individual donor group-metal ion interactions and incorporate this information within the framework of MM3; to further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability; to use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups; ...
Date: June 1, 2000
Creator: Hay, Benjamin P.; Dixon, David A. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM3) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: (1) further understand the structural and energetic aspects of individual donor group-metal ion interactions and incorporate this information within the MM3 framework; (2) further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability; (3) use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups; (4) ...
Date: June 1, 2003
Creator: Hay, Benjamin P.; Dixon, David A. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to the U.S. Department of Energy (DOE). Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM3) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific objectives of this project are as follows: (1) Further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the framework of MM3. (2) Further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability. (3) Use molecule structure building software to generate large numbers of candidate ...
Date: June 1, 2002
Creator: Hay, Benjamin P.; Dixon, David A. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

Computational Design of Metal Ion Sequestering Agents

Description: Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework; further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability; use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups; and screen candidates ...
Date: June 15, 2004
Creator: Hay, Benjamin P. & Rapko, Brian M.
Partner: UNT Libraries Government Documents Department

Process Development for Permanganate Addition During Oxidative Leaching of Hanford Tanks Sludges

Description: Previous Bechtel National, Incorporated (BNI)-sponsored studies have targeted optimizing sodium permanganate for the selective oxidation of chromium from washed Hanford tank sludges (Rapko et al. 2004; Rapko et al. 2005). The recommendation from previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH-] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. At the request of BNI, further work on oxidative alkaline leaching was performed.
Date: October 30, 2007
Creator: Rapko, Brian M.; Lumetta, Gregg J.; Deschane, Jaquetta R.; Peterson, Reid A. & Blanchard, David L.
Partner: UNT Libraries Government Documents Department

Alkaline Leaching of Key, Non-Radioactive Components from Simulants and Hanford Tank Sludge 241-S-110: Results of FY01 Studies

Description: This study addressed three aspects in selected alkaline leaching: first, the use of oxidants persulfate, permanganate, and ferrate as selective chromium-leaching agents from washed Hanford Tank S-110 solids under varying conditions of hydroxide concentration, temperature, and time was investigated. Second, the selective dissolution of solids containing mercury(II) oxide under alkaline conditions was examined. Various compounds were studied for their effectiveness in dissolving mercury under varying conditions of time, temperature, and hydroxide concentration in the leachate. Three compounds were studied: cysteine, iodide, and diethyldithiophosphoric acid (DEDTPA). Finally, the possibility of whether an oxidant bound to an anion-exchange resin can be used to effectively oxidize chromium(III) in alkaline solutions was addressed. The experimental results remain ambiguous to date; further work is required to reach any definitive conclusions as to the effectiveness of this approach.
Date: September 10, 2002
Creator: Rapko, Brian M.; Vienna, John D.; Sinkov, Serguei I.; Kim, Jinseong & Cisar, Alan J.
Partner: UNT Libraries Government Documents Department

Alternative Sodium Recovery Technology—High Hydroxide Leaching: FY10 Status Report

Description: Boehmite leaching tests were carried out at NaOH concentrations of 10 M and 12 M, temperatures of 85°C and 60°C, and a range of initial aluminate concentrations. These data, and data obtained during earlier 100°C tests using 1 M and 5 M NaOH, were used to establish the dependence of the boehmite dissolution rate on hydroxide concentration, temperature, and initial aluminate concentration. A semi-empirical kinetic model for boehmite leaching was fitted to the data and used to calculate the NaOH additions required for leaching at different hydroxide concentrations. The optimal NaOH concentration for boehmite leaching at 85°C was estimated, based on minimizing the amount of Na that had to be added in NaOH to produce a given boehmite conversion.
Date: February 4, 2011
Creator: Mahoney, Lenna A.; Neiner, Doinita; Peterson, Reid A.; Rapko, Brian M.; Russell, Renee L. & Schonewill, Philip P.
Partner: UNT Libraries Government Documents Department

Investigations Into the Nature of Alkaline Soluble, Non-Pertechnetate Technetium

Description: This report summarizes work accomplished in fiscal year (FY) 2013, exploring the chemistry of a low-valence technetium(I) species, [Tc(CO)3(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants. Various aspects of FY 2013’s work were sponsored both by Washington River Protection Solutions and the U.S. Department of Energy’s Office of River Protection; because of this commonality, both sponsors’ work is summarized in this report. There were three tasks in this FY 2013 study. The first task involved examining the speciation of [(CO)3Tc(H2O)3]+ in alkaline solution by 99Tc nuclear magnetic resonance spectroscopy. The second task involved the purchase and installation of a microcalorimeter suitable to study the binding affinity of [(CO)3Tc(H2O)3]+ with various inorganic and organic compounds relevant to Hanford tank wastes, although the actual measure of such binding affinities is scheduled to occur in future FYs. The third task involved examining the chemical reactivity of [(CO)3Tc(H2O)3]+ as relevant to the development of a [(CO)3Tc(H2O)3]+ spectroelectrochemical sensor based on fluorescence spectroscopy.
Date: November 14, 2013
Creator: Rapko, Brian M.; Bryan, Samuel A.; Chatterjee, Sayandev; Edwards, Matthew K.; Levitskaia, Tatiana G.; Peterson, James M. et al.
Partner: UNT Libraries Government Documents Department

EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

Description: Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of ...
Date: August 14, 2009
Creator: Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L. et al.
Partner: UNT Libraries Government Documents Department

Sigma Team for Minor Actinide Separation: PNNL FY 2010 Status Report

Description: Work conducted at Pacific Northwest National Laboratory (PNNL) in FY 2010 addressed two lines of inquiry. The two hypotheses put forth were: 1. The extractants from the TRUEX( ) process (CMPO)( ) and from the TALSPEAK( ) process (HDEHP)( ) can be combined into a single process solvent to separate 1) the lanthanides and actinides from acidic high-level waste and 2) the actinides from the lanthanides in a single solvent extraction process. (Note: This combined process will hereafter be referred to as the TRUSPEAK process.) A series of empirical measurements performed (both at PNNL and Argonne National Laboratory) in FY 2009 supported this hypothesis, but also indicated some nuances to the chemistry. Lanthanide/americium separation factors of 12 and higher were obtained with a prototypic TRUSPEAK solvent when extracting the lanthanides from a citrate-buffered DTPA( ) solution. Although the observed separation factors are sufficiently high to design an actinide/lanthanide separation process, a better understanding of the chemistry is expected to lead to improved solvent formulations and improved process performance. Work in FY 2010 focused on understanding the synergistic extraction behavior observed for Nd(III) and Am(III) when extracted into mixtures of CMPO and HDEHP. The interaction between CMPO and HDEHP in dodecane was investigated by 31P NMR spectroscopy, and an adduct of the type CMPO•HDEHP was found to form. The formation of this adduct will reduce the effective extractant concentrations and must be taken into account when modeling metal ion extraction data in this system. Studies were also initiated to determine the Pitzer parameters for Nd(III) in lactate media. 2. Higher oxidation states (e.g., +5 and +6) of Am can be stabilized in solution by complexation with uranophilic ligands, and this chemistry can be exploited to separate Am from Cm. To test this hypothesis, the previously reported stereognostic uranophilic ligands NPB( ) ...
Date: August 24, 2010
Creator: Lumetta, Gregg J.; Sinkov, Sergey I.; Neiner, Doinita; Levitskaia, Tatiana G.; Braley, Jenifer C.; Carter, Jennifer C. et al.
Partner: UNT Libraries Government Documents Department

Architectural Design Criteria for F-Block Metal Ion Sequestering Agents

Description: The objective of this project is to provide the means to optimize ligand architecture for f-block metal recognition. Our strategy builds on an innovative and successful molecular modeling approach in developing polyether ligand design criteria for the alkali and alkaline earth cations. The hypothesis underlying this proposal is that differences in metal ion binding with multidentate ligands bearing the same number and type of donor groups are primarily attributable to intramolecular steric factors. We propose quantifying these steric factors through the application of molecular mechanics models. The proposed research involves close integration of theoretical and experimental chemistry. The experimental work entails synthesizing novel ligands and experimentally determining structures and binding constants for metal ion complexation by series of ligands in which architecture is systematically varied. The theoretical work entails using electronic structure calculations to parameterize a molecular mechanics force field for a range of metal ions and ligand types. The resulting molecular mechanics force field will be used to predict low energy structures for unidentate, bidentate, and multidentate ligands and their metal complexes through conformational searches. Results will be analyzed to assess the relative importance of several steric factors including optimal M-L length, optimal geometry at the metal center, optimal geometry at the donor atoms (complementarity), and conformation prior to binding (preorganization). An accurate set of criteria for the design of ligand architecture will be obtained from these results. These criteria will enable researchers to target ligand structures for synthesis and thereby dramatically reduce the time and cost associated with metal-specific ligand development.
Date: June 1, 1999
Creator: Hay, Benjamin P.; Roundhill, David M.; Paine Jr., Robert Treat; Raymond, Kenneth N.; Rogers, Robin D.; Hutchison, James E. et al.
Partner: UNT Libraries Government Documents Department

Development of a Chemistry-Based, Predictive Method for Determining the Amount of Non-Pertechnetate Technetium in the Hanford Tanks: FY 2012 Progress Report

Description: This report describes investigations directed toward understanding the extent of the presence of highly alkaline soluble, non-pertechnetate technetium (n-Tc) in the Hanford Tank supernatants. The goals of this report are to: a) present a review of the available literature relevant to the speciation of technetium in the Hanford tank supernatants, b) attempt to establish a chemically logical correlation between available Hanford tank measurements and the presence of supernatant soluble n-Tc, c) use existing measurement data to estimate the amount of n-Tc in the Hanford tank supernatants, and d) report on any likely, process-friendly methods to eventually sequester soluble n-Tc from Hanford tank supernatants.
Date: January 30, 2013
Creator: Rapko, Brian M.; Bryan, Samuel A.; Bryant, Janet L.; Chatterjee, Sayandev; Edwards, Matthew K.; Houchin, Joy Y. et al.
Partner: UNT Libraries Government Documents Department

Pretreatment Engineering Platform Phase 1 Final Test Report

Description: Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.
Date: December 23, 2009
Creator: Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A. et al.
Partner: UNT Libraries Government Documents Department