7 Matching Results

Search Results

Advanced search parameters have been applied.

Properties of vacuum arc deposited amorphous hard carbon films

Description: Amorphous hard carbon films formed by vacuum arc deposition are hydrogen-free, dense, and very hard. The properties of amorphous hard carbon films depend strongly on the energy of the incident ions. A technique which is called Plasma Immersion Ion Implantation can be applied to vacuum arc deposition of amorphous hard carbon films to influence the ion energy. The authors have studied the influence of the ion energy on the elastic modulus determined by an ultrasonic method, and have measured the optical gap for films with the highest sp{sup 3} content they have obtained so far with this deposition technique. The results show an elastic modulus close to that of diamond, and an optical gap of 2.1 eV which is much greater than for amorphous hard carbon films deposited by other techniques.
Date: April 1, 1995
Creator: Anders, S.; Anders, A. & Raoux, S.
Partner: UNT Libraries Government Documents Department

Plasma synthesis of rare earth doped integrated optical waveguides

Description: We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.
Date: March 1, 1995
Creator: Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. & Ivanov, I.C.
Partner: UNT Libraries Government Documents Department

Formation of metal oxides by cathodic arc deposition

Description: Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.
Date: March 1, 1995
Creator: Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F. et al.
Partner: UNT Libraries Government Documents Department

Modification of cathodic arc deposition profiles by magnetic multicusps

Description: The deposition profile of a cathodic arc plasma source with and without magnetic macroparticle filter has been measured using a deposition probe technique. It has been found that the profile is close to a Gaussian and that the width of the profile depends on the cathode material. It was found that the dependence on the cathode material leads to a considerable radial variation of the elemental composition of the film when an alloy cathode is used. A magnetic multicusp field (magnetic bucket) near the exit of the plasma source or the magnetic filter was applied to flatten and homogenize the deposition profile.
Date: April 1, 1996
Creator: Anders, S.; MacGill, R. A.; Raoux, S. & Brown, I. G.
Partner: UNT Libraries Government Documents Department

Domain-size-dependent exchange bias in Co/LaFeO3

Description: X-ray microscopy using magnetic linear dichroism of a zero-field-grown, multi-domain Co/LaFeO{sub 3} ferromagnet/antiferromagnet sample shows a local exchange bias of random direction and magnitude. A statistical analysis of the local bias of individual, micron-size magnetic domains demonstrates an increasing bias field with decreasing domain size as expected for a random distribution of pinned, uncompensated spins, which are believed to mediate the interface coupling. A linear dependence with the inverse domain diameter is found.
Date: September 22, 2004
Creator: Scholl, A.; Nolting, F.; Seo, J.W.; Ohldag, H.; Stohr, J.; Raoux,S. et al.
Partner: UNT Libraries Government Documents Department

Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

Description: A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.
Date: May 20, 2006
Creator: MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E. et al.
Partner: UNT Libraries Government Documents Department

An aberration corrected photoemission electron microscope at the advanced light source

Description: Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.
Date: November 1, 2003
Creator: Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N. et al.
Partner: UNT Libraries Government Documents Department