3 Matching Results

Search Results

Advanced search parameters have been applied.

FY2002 Progress Summary Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

Description: The High Average Power Laser Program (HAPL) is a multi-institutional, coordinated effort to develop a high-energy, repetitively pulsed laser system for Inertial Fusion Energy and other DOE and DOD applications. This program is building a laser-fusion energy base to complement the laser-fusion science developed by DOE Defense programs over the past 25 years. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and LLNL. The current LLNL proposal is a companion proposal to that submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. Aside from the driver development aspect, the NRL and LLNL companion proposals pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, materials and power plant economics. This report requests continued funding in FY02 to support LLNL in its program to build a 1kW, 100J, diode-pumped, crystalline laser. In addition, research in high gain laser target design, fusion chamber issues and survivability of the final optic element will be pursued. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments.
Date: December 13, 2001
Creator: Bayramian, A; Bibeau, C; Beach, R; Behrendt, B; Ebbers, C; Latkowski, J et al.
Partner: UNT Libraries Government Documents Department

The Mercury Project: A High Average Power, Gas-Cooled Laser For Inertial Fusion Energy Development

Description: Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 10{sup 9} shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 x 6 cm{sup 2} ytterbium doped strontium fluoroapatite (Yb:S-FAP) amplifier slabs pumped by eight 100 kW diode arrays. The 1047 nm fundamental wavelength was converted to 523 nm at 160 W average power with 73% conversion efficiency using yttrium calcium oxy-borate (YCOB).
Date: November 3, 2006
Creator: Bayramian, A; Armstrong, P; Ault, E; Beach, R; Bibeau, C; Caird, J et al.
Partner: UNT Libraries Government Documents Department

The Mercury Laser System: An Average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction

Description: We report on the operation of the Mercury laser with fourteen 4 x 6 cm{sup 2} Yb:S-FAP amplifier slabs pumped by eight 100 kW peak power diode arrays. The system was continuously run at 55 J and 10 Hz for several hours, (2 x 10{sup 5} cumulative shots) with over 80% of the energy in a 6 times diffraction limited spot at 1.047 um. Improved optical quality was achieved in Yb:S-FAP amplifiers with magneto-rheological finishing, a deterministic polishing method. In addition, average power frequency conversion employing YCOB was demonstrated at 50% conversion efficiency or 22.6 J at 10 Hz.
Date: August 31, 2005
Creator: Bibeau, C; Bayramian, A; Armstrong, P; Ault, E; Beach, R; Benapfl, M et al.
Partner: UNT Libraries Government Documents Department