2 Matching Results

Search Results

Advanced search parameters have been applied.

RF current drive antenna. Final report, August 15, 1993--August 14, 1995

Description: This work represents an attempt to solve a fundamental problem with all coupling devices in tokamaks intended to launch waves in the ion cyclotron range of frequencies (ICRF), that of excessive voltage levels on the launcher and its feed lines. These voltages can lead to impurity problems in the plasma, and they determine the maximum power that can be coupled to the plasma, since it is when arcs caused by this voltage frequently occur that the power must be reduced. The approach taken is to consider an antenna which is composed of many smaller units, each operating at much lower voltages, stacked on end to provide the equivalent functionality of a conventional launcher. The work described herein involved designing, building, and operating such a launcher in the Phaedrus-T tokamak. The results showed that the antenna worked as expected, reducing the voltage dramatically, while still functioning property, and producing fewer impurity problems and no arcing. A design extrapolating the principles of this idea to reactor-sized tokamaks such as ITER was developed. In addition, a novel decoupling scheme was developed in order to adapt this antenna idea to low frequency current drive schemes.
Date: September 1, 1995
Creator: Probert, P.H.
Partner: UNT Libraries Government Documents Department

Progress Towards High Performance, Steady-state Spherical Torus

Description: Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted on NSTX to test the method up to Ip {approx} ...
Date: October 2, 2003
Creator: Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W. et al.
Partner: UNT Libraries Government Documents Department