6 Matching Results

Search Results

Advanced search parameters have been applied.

Design and fabrication of a LIGA milliengine

Description: This paper reports on the design and fabrication of a new milliscale magnetic actuator that is ideally suited for LIGA processing. LIGA processing permits the fabrication of millisized machine elements that cannot be fabricated by conventional miniature machining techniques because of their small feature sizes. The Milliengine is a magnetically driven device that utilizes a unique design to extend the 2-dimensional fabrication capability of LIGA to create 3-dimensional machinery.
Date: April 1, 1997
Creator: Garcia, E.J.; Christenson, T.R.; Polosky, M.A. & Jojola, A.A.
Partner: UNT Libraries Government Documents Department

Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

Description: This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.
Date: April 1, 1999
Creator: Feddema, J.T.; Simon, R.; Polosky, M. & Christenson, T.
Partner: UNT Libraries Government Documents Department

Surface micromachined counter-meshing gears discrimination device

Description: This paper discusses the design, fabrication and testing of a surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock, A 24 bit code is input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect. The motivation for the development of this device is based on occurrences referred to as High Consequence Events, A High Consequence Event is an event where an inadvertent operation of a system could result in the catastrophic loss of life, property, or damage to the environment.
Date: January 1, 1998
Creator: Polosky, M.A.; Garcia, E.J. & Allen, J.J.
Partner: UNT Libraries Government Documents Department

Micro-grippers for assembly of LIGA parts

Description: This paper describes ongoing testing of two microgrippers for assembly of LIGA (Lithographie Galvanoformung Abformung) parts. The goal is to place 100 micron outside diameter (OD) LIGA gears with a 50 micron inner diameter hole onto pins ranging from 35 to 49 microns. The first micro gripper is a vacuum gripper made of a 100 micron OD stainless steel tube. The second micro gripper is a set of tweezers fabricated using the LIGA process. Nickel, Permalloy, and copper materials are tested. The tweezers are actuated by a collet mechanism which is closed by a DC linear motor.
Date: December 31, 1997
Creator: Feddema, J.; Polosky, M.; Christenson, T.; Spletzer, B. & Simon, R.
Partner: UNT Libraries Government Documents Department

Optical measurement of LIGA milliengine performance

Description: Understanding the parameters that affect the performance of milliscale and microscale actuators is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. This paper discusses the development of optical techniques for motion measurements of LIGA fabricated milliengines. LIGA processing permits the fabrication of precision millimeter-sized machine elements that cannot be fabricated by conventional miniature machining techniques because of their small feature sizes. In addition, tolerances of 1 part in 10{sup 3} to 10{sup 4} may be maintained in millimeter sized components with this processing technique. Optical techniques offer a convenient means for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. Optical techniques can also be used to provide feedback signals needed for control and sensing of the state of the machine. Optical probe concepts and experimental data obtained using a milliengine developed at Sandia National Laboratories are presented.
Date: December 31, 1997
Creator: Dickey, F.M.; Holswade, S.C.; Christenson, T.R.; Garcia, E.J. & Polosky, M.A.
Partner: UNT Libraries Government Documents Department

Surface Micromachined Components for a Safety Subsystem Application

Description: We have designed and fabricated a system using micromachining technologies that represents the first phase of an effort to develop a miniaturized or micro trajectory safety subsystem. Two Surface Micromachined (SMM) devices have been fabricated. The first is a device, denoted the Shuttle Mechanism, that contains a suspended shuttle that has a unique code imbedded in its surface. The second is a mechanical locking mechanism, denoted a Stronglink, that uses the code imbedded in the Shuttle Mechanism for unlocking. The Stronglink is designed to block a beam of optical energy until unlocked. A Photonic Integrated Circuit (PIC) fabricated in Gallium Arsenide (GaAs) and an ASIC have been designed to read the code contained in the Shuttle Mechanism. The ASIC interprets the data read by the PIC and outputs low-level drive signals for the actuators used by the Stronglink. An off-chip circuit amplifies the drive signals. Once the Stronglink is unlocked, a laser array that is assembled beneath the device is energized and light is transmitted through an aperture.
Date: March 4, 1999
Creator: Garcia, E.J.; Holswade, S.; Plummer, D.W.; Polosky, M.A.; Shul, R.J. & Sulivan, C.T.
Partner: UNT Libraries Government Documents Department