10 Matching Results

Search Results

Advanced search parameters have been applied.

The R-curve response of ceramics with microscopic reinforcements: Reinforcement and additive effects

Description: Using direct observations with the scanning electron and optical microscopes, simultaneous measurements of fracture resistance versus crack length (R-curve behavior) and crack interactions with microstructural features at the crack tip and in its wake were made. Selecting whisker-reinforced aluminas and self-reinforced silicon nitrides, one can examine the effects of systematic modifications of microstructure and composition on the R-curve response and the mechanisms giving rise to it. Specifically, increases in whisker content and size can increase the R-Curve response, even for short crack lengths. In the self-reinforced silicon nitrides, changes in alumina: yttria additive ratios also modify the R-curve. Modeling of the R-curve response allows one to verify toughening mechanisms and, with experimental studies, to optimize the R-curve behavior in ceramics containing microscopic reinforcements, e.g., whiskers and elongated grain structures.
Date: May 1, 1996
Creator: Becher, P.F.; Sun, E.Y.; Plucknett, K,P. & Hsueh, C.H.
Partner: UNT Libraries Government Documents Department

Ductile intermetallic toughened carbide matrix composites

Description: Ductile Ni{sub 3}Al alloys have been used as binder phase for fabrication of TiC and WC matrix composites. Ni{sub 3}Al has good corrosion resistance to aqueous acidic environments, and its yield strength increases with temperature to a max at 700-800 C; this combined with high tensile ductilities (up to 50% strain) make Ni{sub 3}Al attractive for replacing Co in cemented carbides. Materials have been fabricated by both hot pressing and vacuum sintering, with Ni{sub 3}Al contents of 15 to 95 vol%. Vacuum sintering cycles, similar to those used for WC/Co and TiC/Ni (1450-1600 C), resulted in sintered densities >95% theoretical. WC/Ni{sub 3}Al materials showed an order of magnitude improvement in corrosion resistance over WC/Co, in sulfuric/nitric acid. These materials also had improved high temperature strength retention compared to WC/Co cermets, though initial RT strengths were lower. Fracture toughness varied between 8 and 25 MPa.m{sup 1/2} and depended primarily on Ni{sub 3}Al content and composition.
Date: August 1, 1996
Creator: Plucknett, K.P.; Tiegs, T.N.; Becher, P.F.; Waters, S.B. & Menchhofer, P.A.
Partner: UNT Libraries Government Documents Department

Interface degradation in CAS/Nicalon during elevated temperature aging

Description: A CaO-Al{sub 2}O{sub 3}-SiO{sub 2} (CAS)/Nicalon glass-ceramic matrix composite has been subjected to elevated temperature oxidation heat-treatments between 375 and 1200{degrees}C, for up to 100 hours. Micro- and macro-mechanical properties have been determined by fiber push-down, using a mechanical properties microprobe, and flexure testing, respectively. Aging between 450 and 800{degrees}C results in significant property degradation, with reduced bending modulus and flexure strength, increased fiber sliding stress, and a transition to a purely brittle failure mode. Aging degradation is due to oxidative removal of the carbon interlayer, with the subsequent formation of a silica bond between fiber and matrix. At higher temperatures, carbon is retained due to the formation of a protective silica plug at exposed fiber ends, with the subsequent retention of composite properties. Short duration pre-treatment schedules, at 1000 or 1100{degrees}C, were developed to prevent intermediate temperature property degradation.
Date: March 1, 1995
Creator: Plucknett, K.P.; Cain, R.L. & Lewis, M.H.
Partner: UNT Libraries Government Documents Department

Interface modification during oxidation of a glass-ceramic matrix/SiC fibre composite

Description: Oxidation heat treatments between 375{degrees}C and 600{degrees}C for 100 hours in air, have been performed on the calcium aluminosilicate glass-ceramic matrix/SiC fibre reinforced composite CAS/Nicalon (manufactured by Coming, USA). Using a commercial nano-indentation system to perform fibre push-down tests, the fibre-matrix interfacial debond fracture surface energy (G{sub i}) and frictional shear stress ({tau}) have been determined. Modification of interface properties, compared to the as fabricated material, was observed at heat treatment temperatures as low as 375{degrees}C, where a significant drop in G{sub i} and an increase in {tau} were recorded. With 450{degrees}C, 525{degrees}C and 600{degrees}C heat treatments, an increase in G{sub i} but a dramatic increase in {tau} were recorded. Under four-point flexure testing, the as fabricated and the 375{degrees}C heat treated materials displayed tough, composite behaviour with extensive fibre pull out, but at {le}450{degrees}C, brittle failure with minimal fibre pull out, was observed. This transition from tough mechanical response to one of brittleness is due to the large increase in {tau} reducing fibre pull out to a minimum and therefore reducing the total required work of fracture. The large increases in {tau} and G{sub i} have been attributed to the oxidative removal of the lubricating, carbon interface and the compressive residual stresses across the interface.
Date: April 1, 1996
Creator: Daniel, A.M.; Martin-Meizoso, A.; Plucknett, K.P. & Braski, D.N.
Partner: UNT Libraries Government Documents Department

Environmental aging degradation in continuous fiber ceramic composites

Description: The thermal stability of two-continuous fiber ceramic composites (CFCC`s) has been assessed. A Nicalon/CaO-Al{sub 2}O{sub 3}-SiO{sub 2} (CAS) glass-ceramic composite has been subjected to unstressed, oxidation heat treatments between 375 and 1200{degrees}C, after which the material was tested in flexure at room temperature. The static fatigue behavior of a chemical vapor infiltrated (CVI) Nicalon/SiC ceramic matrix composite has been assessed in air, between 425 and 1150{degrees}C, both with and without protective seal coating. Severe property degradation was observed due to oxidation of the graphite fiber/matrix interlayer in both CFCC`s.
Date: December 31, 1995
Creator: Plucknett, K. P.; Lin, H. T.; Braski, D. N. & Becher, P. F.
Partner: UNT Libraries Government Documents Department

Control of interface fracture in silicon nitride ceramics: influence of different rare earth elements

Description: The toughness of self-reinforced silicon nitride ceramics is improved by enhancing crack deflection and crack bridging mechanisms. Both mechanisms rely on the interfacial debonding process between the elongated {Beta}-Si{sub 3}N{sub 4} grains and the intergranular amorphous phases. The various sintering additives used for densification may influence the interfacial debonding process by modifying the thermal and mechanical properties of the intergranular glasses, which will result in different residual thermal expansion mismatch stresses; and the atomic bonding structure across the {Beta}-Si{sub 3}N{sub 4} glass interface. Earlier studies indicated that self-reinforced silicon nitrides sintered with different rare earth additives and/or different Y{sub 2}O{sub 3}:AI{sub 2}0{sub 3} ratios could exhibit different fracture behavior that varied from intergranular to transgranular fracture. No studies have been conducted to investigate the influence of sintering additives on the interfacial fracture in silicon nitride ceramics. Because of the complexity of the material system and the extremely small scale, it is difficult to conduct quantitative analyses on the chemistry and stress states of the intergranular glass phases and to relate the results to the bulk properties. The influence of different sintering additives on the interfacial fracture behavior is assessed using model systems in which {Beta}-Si{sub 3}N{sub 4}whiskers are embedded in SIAIRE (RE: rare-earth) oxynitride glasses. By systematically varying the glass composition, the role of various rare-earth additives on interfacial fracture has been examined. Specifically, four different additives were investigated: Al{sub 2}0{sub 3}, Y{sub 2}0{sub 3}, La{sub 2}O{sub 3}, and Yb{sub 2}O{sub 3}. In addition, applying the results from the model systems, the R- curve behavior of self-reinforced silicon nitride ceramics sintered with different Y{sub 2}0{sub 3}:AI{sub 2}0{sub 3} ratios was characterized.
Date: October 1, 1996
Creator: Sun, E. Y.; Becher, P. F.; Waters, S. B.; Hsueh, Chun-Hway; Plucknett, K. P. & Hoffmann, M. J.
Partner: UNT Libraries Government Documents Department

Intermetallic bonded ceramic matrix composites

Description: A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.
Date: July 1995
Creator: Plucknett, K. P.; Tiegs, T. N.; Alexander, K. B.; Becher, P. F.; Schneibel, J. H.; Waters, S. B. et al.
Partner: UNT Libraries Government Documents Department

Ceramic composites with a ductile Ni{sub 3}Al binder phase

Description: Composites using B-doped ductile Ni{sub 3}Al alloys were produced with both non-oxide (WC, TiC) and oxide (Al{sub 2}0{sub 3}) ceramic powders. Typical powder processing techniques were used to fabricate materials with ceramic contents from 0-95 vol. %. The microstructural morphology of the composites depends primarily on the wetting behavior between the alloys and the ceramic powders. The non-oxide ceramic powders wet well and the Ni{sub 3}Al alloys form a semi-continuous intergranular phase. On the other hand, the Ni{sub 3}Al alloys do not wet the oxide powders well and tend to form discrete ``islands`` of the metallic phase. Wetting in these materials can be improved by the addition of non-oxide particles, such as TiC. Results on the mechanical properties showed ambient temperature flexural strength similar to other Ni-based hardmetals. In contrast to the WC-Co materials, the flexural strength is retained to temperatures of at least 800 C. The fracture toughness and hardness were found to be equal or higher than comparable Co-based hardmetal systems. Initial corrosion tests showed excellent resistance to acid solutions.
Date: June 1, 1995
Creator: Tiegs, T.N.; Alexander, K.B.; Plucknett, K.P.; Menchhofer, P.A.; Becher, P.F. & Waters, S.B.
Partner: UNT Libraries Government Documents Department

Tailoring the intergranular phases in silicon nitride for improved toughness

Description: Intergranular glass phases can have a significant influence on fracture resistance (R-curve behavior) of Si nitride ceramics and appears to be related to debonding of the {beta}-Si{sub 3}N{sub 4}/oxynitride-glass interfaces. Applying the results from {beta}- Si{sub 3}N{sub 4}-whisker/oxynitride-glass model systems, self- reinforced Si nitrides with different sintering additive ratios were investigated. Si nitrides sintered with a lower Al{sub 2}O{sub 3}: Y{sub 2}O{sub 3} additive ratio exhibited higher stead-state fracture toughness together with a steeply rising R-curve. Analytical electron microscopy suggested that the different fracture behavior is related to the Al content in the SiAlON growth band on the elongated grains, which could result in differences in interfacial bonding structures between the grains and the intergranular glass.
Date: December 31, 1996
Creator: Sun, E. Y.; Becher, P. F.; Plucknett, K. P.; Waters, S. B.; Hirao, K. & Brito, M. E.
Partner: UNT Libraries Government Documents Department

Toughening behavior in ceramics and cermets

Description: The development of high strength ({ge} 1 GPa), high toughness ({ge} 10 MPa {radical}m) ceramic systems is being examined using two approaches. In silicon nitride, toughening is achieved by the introduction of large prismatic shaped grains dispersed in a fine grain matrix. For the system examined herein, both the microstructure and the composition must be controlled. A distinctly bimodal distribution of grain diameters combined with controlled yttria to alumina ratio in additives to promote interfacial debonding is required. Using a cermet approach, ductile Ni{sub 3}Al-bonded TiC exhibited toughening due to plastic deformation within the Ni{sub 3}Al binder phase assisted by interfacial debonding and cleavage of TiC grains. The TiC-Ni{sub 3}Al cermets have toughness values equal to those of the WC-Co cermets. Furthermore, the TiC-Ni{sub 3}Al cermets exhibit high strengths that are retained in air to temperatures of {approximately} 1,000 C.
Date: October 1, 1998
Creator: Becher, P.F.; Sun, E.Y.; Hsueh, C.H.; Plucknett, K.P.; Kim, H.D.; Hirao, K. et al.
Partner: UNT Libraries Government Documents Department