16 Matching Results

Search Results

Advanced search parameters have been applied.

Dust-Particle Transport in Tokamak Edge Plasmas

Description: Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.
Date: September 12, 2005
Creator: Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K & Rognlien, T D
Partner: UNT Libraries Government Documents Department

Simulation of Large Parallel Plasma Flows in the Tokamak SOL Driven by Cross-Field Transport Asymmetries

Description: Large-Mach-number parallel plasma flows in the single-null SOL of different tokamaks are simulated with multi-fluid transport code UEDGE. The key role of poloidal asymmetry of cross-field plasma transport as the driving mechanism for such flows is discussed. The impact of ballooning-like diffusive and convective transport and plasma flows on divertor detachment, material migration, impurity flows, and erosion/deposition profiles is studied. The results on well-balanced double null plasma modeling that are indicative of strong asymmetry of cross-field transport are presented.
Date: June 6, 2006
Creator: Pigarov, A Y; Krasheninnikov, S I; LaBombard, B & Rognlien, T D
Partner: UNT Libraries Government Documents Department

Transport of Dust Particles in Tokamak Devices

Description: Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.
Date: June 6, 2006
Creator: Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D & Rozenberg, M
Partner: UNT Libraries Government Documents Department

DEGAS 2 neutral transport modeling of high density, low temperature plasmas

Description: Neutral transport in the high density, low temperature plasma regime is examined using the DEGAS 2 Monte Carlo neutral transport code. DEGAS 2 is shown to agree with an analytic fluid neutral model valid in this regime as long as the grid cell spacing is less than twice the neutral mean-free path. Using new atomic physics data provided by the collisional radiative code CRAMD, DEGAS 2 is applied to a detached Alcator C-Mod discharge. A model plasma with electron temperature {approximately}1 eV along detached flux tubes, between the target and the ionization front, is used to demonstrate that recombination is essential to matching the experimental data. With the CRAMD data, {approximately}20% of the total recombination is due to molecular activated recombination.
Date: May 1, 1997
Creator: Stotler, D.P.; Karney, C.F.F. & Pigarov, A.Y.
Partner: UNT Libraries Government Documents Department

Multi-fluid code simulations including anomalous non-diffusive transport of plasma and impurities in the tokamak SOL

Description: Fast intermittent transport has been observed in the scrape-off layer (SOL) of major tokamaks including Alcator C-Mod, DIII-D, and NSTX. This kind of transport is not diffusive but rather convective. It strongly increases plasma flux to the chamber walls and enhances the recycling of neutral particles in the main chamber. We discuss anomalous cross-field convection (ACFC) model for impurity and main plasma ions and its relation to intermittent transport events, i.e. plasma density blobs and holes in the SOL. Along with plasma diffusivity coefficients, our transport model introduces time-independent anomalous cross-field convective velocity. In the discharge modelling, diffusivity coefficients and ACFC velocity profiles are adjusted to match a set of representative experimental data. We use this model in the edge plasma physics code UEDGE to simulate the multi-fluid two-dimensional transport for these three tokamaks. We present simulation results suggesting the dominance of anomalous convection in the far SOL transport. These results are consistent with the hypothesis that the chamber wall is an important source of impurities and that different impurity charge states have different directions of anomalous convective velocity.
Date: November 25, 2003
Creator: Pigarov, A Y; West, W; Soukhanovskii, V; Rognlien, T; Maingi, R; Lipschultz, B et al.
Partner: UNT Libraries Government Documents Department

Measurement of Molecular Deuterium Fluxes in the DIII-D Edge

Description: In hydrogen-fueled tokamak discharges, the distribution of molecular hydrogen (or deuterium) in the plasma edge region plays a central role in edge fueling, affecting pedestal shape and core density control [1]. In addition to its role in edge fueling, molecular hydrogen is important for plasma edge atomic physics. An example of this is the enhancement of plasma volume recombination known to occur in the presence of vibrationally-excited hydrogen molecules via conversion of H{sup +} ions into molecular ions such as H{sub 2}{sup +} and H{sub 3}{sup +} [2]. Here, measurements of the D{sub 2} molecule flux into the far edge/scrape-off layer (SOL) of the DIII-D tokamak are made using passive visible spectroscopy of the D{sub 2} diagonal Fulcher band (3p-2s triplet Q-branch) line emission over the range {lambda} = 600.640 nm [3]. L-mode, lower-single-null discharges are studied. A multi-chord visible spectrometer with views of both lower divertor legs and the main chamber is used [4]. A schematic of the spectrometer view chords used here, as well as typical magnetic flux surfaces, midplane probe location, and Thomson scattering view locations, are shown in Fig. 1. As a convenient variable to describe the location of each view chord, the poloidal angle {theta} of the corresponding emission volume is used (Fig. 1). Each view chord crosses the SOL twice; in the case of the upper view chords and lower view chords, the emission from the SOL closer to the lower divertor is expected to dominate the measured signal. In the case of the midplane view chord, lineshape (Zeeman splitting) analysis of the D{sub {alpha}} line indicates that the received emission is typically dominated by the inner wall SOL (over the outer wall SOL by {approx} 2-8x).
Date: June 24, 2005
Creator: Hollmann, E; Brezinsek, S; Brooks, N; Groth, M; Lisgo, S; McLean, A et al.
Partner: UNT Libraries Government Documents Department

Convective Transport in Tokamaks

Description: Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can ''short-circuit'' the divertor in some cases. The theory of ''blob'' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit.
Date: February 16, 2005
Creator: D'Ippolito, D A; Myra, J R; Russell, D A; Krasheninnikov, S I; Pigarov, A Y; Yu, G Q et al.
Partner: UNT Libraries Government Documents Department


Description: Changes in the divertor magnetic balance in DIII-D H-mode plasmas affects core, edge, and divertor plasma behavior. Both the pedestal density n{sub e,PED} and plasma stored energy W{sub T} were sensitive to changes in magnetic balance near the double-null (DN) configuration, e.g., both decreased 20%-30% when the DN shifted to a slightly unbalanced DN, where the B x {del}B drift direction pointed away from the main X-point. Recycling at each of the four divertor targets was sensitive to changes in magnetic balance and the B x {del}B drift direction. The poloidal distribution of the recycling in DN is in qualitative agreement with the predictions of UEDGE modeling with particle drifts included. The particle flux at the inner divertor target is shown to be much more sensitive to magnetic balance than the particle flux at the outer divertor target near the DN shape. These results suggest possible advantages and drawbacks for balanced DN operation.
Date: June 1, 2002
Partner: UNT Libraries Government Documents Department

Observation of Dust in DIII-D Divertor and SOL by Visible Imaging

Description: Dust is commonly found in fusion devices. Though generally of no concern in the present day machines, dust may pose serious safety and operational concerns for ITER. Micron-size dust usually dominates the samples collected from tokamaks. During a plasma discharge micron-size dust particles can become highly mobile and travel over distances of a few meters. Once inside the plasma, dust particles heat up to over 3000 K and emit thermal radiation that can be detected by visible imaging techniques. Observations of naturally occurring and artificially introduced dusts have been performed in DIII-D divertor and scrape-off layer (SOL) using standard frame rate CMOS cameras, a gated-intensified CID camera, and a fast-framing CMOS camera. In the first 2-3 plasma discharges after a vent with personnel entry inside the vacuum vessel ('dirty vent') dust levels were quite high with thousands of particles observed in each discharge. Individual particles moving at velocities of up to a few hundred m/s and breakup of larger particles into pieces were observed. After about 15 discharges dust was virtually gone during the stationary portion of a discharge, and appeared at much reduced levels during the plasma initiation and termination phases. After a few days of plasma operations (about 70 discharges) dust levels were further reduced to just a few observed events per discharge except in discharges with current disruptions that produced significant amounts of dust. An injection of a few milligram of micron-size (6 micron median diameter) carbon dust into a high-power lower single-null ELMing H-mode discharge with strike points swept across the lower divertor floor was performed. A significant increase of the core carbon radiation was observed for about 250 ms after the injection, as the total radiated power increased twofold. Dust particles from the injection were observed by the fast framing camera in the outboard SOL ...
Date: April 2, 2007
Creator: Rudakov, D L; West, W P; Groth, M; Yu, J H; Wong, C C; Boedo, J A et al.
Partner: UNT Libraries Government Documents Department

Dust Studies in DIII-D Tokamak

Description: Studies of submicron dust using Mie scattering from Nd:YAG lasers and video data of micron to sub-millimeter sized dust on DIII-D tokamak have provided the first data of dust sources and transport during tokamak discharges. During normal operation on DIII-D dust observation rates are low, a few events per discharge or less. The net carbon content of the dust corresponds to a carbon atom density a few orders of magnitude below the core impurity density. Statistical analysis of Mie data collected over months of operation reveal correlation of increased dust rate with increased heating power and impulsive wall loading due to edge localized modes (ELMs) and disruptions. Generation of significant amounts of dust by disruptions is confirmed by the camera data. However, dust production by disruptions alone is insufficient to account for estimated in-vessel dust inventory in DIII-D. After an extended entry vent, thousands of dust particles are observed by cameras in the first 2-3 plasma discharges. Individual particles moving at velocities up to {approx}300 m/s, breakup of larger particles into pieces, and collisions of particles with walls are observed. After {approx}70 discharges, dust levels are reduced to a few events per discharge. In order to calibrate diagnostics and benchmark modeling, milligram amounts of micron-sized carbon dust have been injected into DIII-D discharges, leading to the core carbon density increase by a factor of 2-3. Following injection, dust trajectories in the divertor are mostly in the toroidal direction, consistent with the ion drag force. Dust from the injection is observed in the outboard midplane by a fast framing camera. The observed trajectories and velocities of the dust particles are in qualitative agreement with modeling by the 3D DustT code.
Date: April 15, 2008
Creator: Rudakov, D L; West, W P; Groth, M; Yu, J H; Boedo, J A; Bray, B D et al.
Partner: UNT Libraries Government Documents Department

Migration of Artificially Introduced Micron Size Carbon Dust in the DIII-D Divertor

Description: Migration of pre-characterized carbon dust in a tokamak environment was studied by introducing about 30 milligrams of dust flakes 5-10 {micro}m in diameter in the lower divertor of DIII-D using the DiMES sample holder. The dust was exposed to high power ELMing Hmode discharges in lower-single-null magnetic configuration with the strike points swept across the divertor floor. When the outer strike point (OSP) passed over the dust holder exposing it to high particle and heat fluxes, part of the dust was injected into the plasma. In about 0.1 sec following the OSP pass over the dust, 1-2% of the total dust carbon content (2-4 x 10{sup 19} carbon atoms, equivalent to a few million dust particles) penetrated the core plasma, raising the core carbon density by a factor of 2-3. When the OSP was inboard of the dust holder, the dust injection continued at a lower rate. Individual dust particles were observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction for deuteron flow to the outer divertor target, consistent with the ion drag force. The observed behavior of the dust is in qualitative agreement with modeling by the 3D DustT code.
Date: May 15, 2006
Creator: Rudakov, D; West, W; Wong, C; Brooks, N; Evans, T; Fenstermacher, M et al.
Partner: UNT Libraries Government Documents Department

Far SOL Transport and Main Wall Plasma Interaction in DIII-D

Description: Far scrape-off layer (SOL) and near-wall plasma parameters in DIII-D depend strongly on the discharge parameters and confinement regime. In L-mode discharges cross-field transport increases with the average discharge density and flattens far SOL profiles, thus increasing plasma-wall contact. In H-mode between edge localized modes (ELMs), plasma-wall contact is generally weaker than in L-mode. During ELMs plasma fluxes to the wall increase to, or above the L-mode levels. Depending on the discharge conditions ELMs are responsible for 30-90% of the ion flux to the outboard chamber wall. Cross-field fluxes in far SOL are dominated by large amplitude intermittent transport events that may propagate all the way to the outer wall and cause sputtering. A Divertor Material Evaluation System (DiMES) probe containing samples of several ITER-relevant materials including carbon, beryllium and tungsten was exposed to a series of upper single null (USN) discharges as a proxy to measure the first wall erosion.
Date: October 19, 2004
Creator: Rudakov, D L; Boedo, J A; Moyer, R A; Stangeby, P C; Watkins, J G; Whyte, D G et al.
Partner: UNT Libraries Government Documents Department

Status and Plans for the National Spherical Torus Experimental Research Facility

Description: An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.
Date: July 27, 2005
Creator: Columbia University
Partner: UNT Libraries Government Documents Department