14 Matching Results

Search Results

Advanced search parameters have been applied.

Effect of pore pressure on damage accumulation in salt

Description: Laboratory data acquired from two multistage, triaxial compression creep experiments are presented for bedded salt. The experiments were conducted to study the effect of pore pressure changes on the accumulation of damage (dilatant volumetric strain). The first experiment comprised five constant total stress tests in which the internal pore pressure was incremented during successive stages, while the externally applied axial and radial stresses were maintained constant. The second experiment comprised three constant effective stress tests in which the pore pressure and the externally applied axial and radial stresses were increased in equal increments in successive stages. Volumetric strain rates were determined both before and after the pore pressure changes were made in all tests. The data suggest pore pressure changes made during the constant total stress tests have a greater effect on salt dilation than do changes made during the constant effective stress tests.
Date: June 12, 2000
Creator: PFEIFLE,T.W. & HURTADO,L. DIANE
Partner: UNT Libraries Government Documents Department

Database of Mechanical and Hydrological Properties of WIPP Anhydrite Derived from Laboratory-Scale Experiments

Description: The Department of Energy (DOE) has developed the Waste Isolation Pilot Plant (WIPP) for the purpose of demonstrating safe management, storage, and disposal of radioactive transuranic (TRU) waste generated by U.S. defense programs. The WIPP is located in southeastern New Mexico, and the underground facilities of the WIPP (i.e., experimental rooms, disposal rooms, etc.) are sited in the bedded salt of the Salado Formation at a depth of about 660 meters. The DOE has authorized the continuance of scientific research and engineering analysis related to the performance of the WIPP repository. One area of additional research relates to characterization of the mechanical and hydrological properties of anhydrite interbeds within the Salado Formation. These anhydrite interbeds have been penetrated by the shafts that provide access to the underground facilities and also lie in close proximity to the proposed radioactive waste disposal rooms at the repository horizon. Properties of particular interest are mechanical strength, deforrnational behavior, and fluid transport properties such as permeability. These properties will be used in calculationskmalyses of the mechanical and hydrological behavior of the anhydrite, in particular, and the shaft sealing system and disposal rooms, in general.
Date: October 1, 1998
Creator: Hansen, F.D. & Pfeifle, T.W.
Partner: UNT Libraries Government Documents Department

Influence of variables on the consolidation and unconfined compressive strength of crushed salt: Technical report

Description: Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 25/sup 0/C and 100/sup 0/C; time, 3.5 x 10/sup 3/s and 950 x 10/sup 3/s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85% relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1 x 10/sup -5/s/sup -1/. Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength. 7 refs., 7 figs., 11 tabs.
Date: January 1, 1987
Creator: Pfeifle, T.W.; Senseny, P.E. & Mellegard, K.D.
Partner: UNT Libraries Government Documents Department

Laboratory Characterization of Mechanical and Permeability Properties of Dynamically Compacted Crushed Salt

Description: The U. S. Department of Energy plans to dispose of transuranic wastes at the Waste Isolation Pilot Plant (WIPP), a geologic repository located at a depth of about 655 meters. The WIPP underground facility is located in the bedded salt of the Salado Formation. Access to the facility is provided through vertical shafts, which will be sealed after decommissioning to limit the release of hazardous waste from the repository and to limit flow into the facility. Because limited data are available to characterize the properties of dynamically compacted crushed salt, Sandia National Laboratories authorized RE/SPEC to perform additional tests on specimens of dynamically compacted crushed salt. These included shear consolidation creep, permeability, and constant strain-rate triaxial compression tests. A limited number of samples obtained from the large compacted mass were available for use in the testing program. Thus, additional tests were performed on samples that were prepared on a smaller scale device in the RE/SPEC laboratory using a dynamic-compaction procedure based on the full-scale construction technique. The laboratory results were expected to (1) illuminate the phenomenology of crushed-salt deformation behavior and (2) add test results to a small preexisting database for purposes of estimating parameters in a crushed-salt constitutive model. The candidate constitutive model for dynamically compacted crushed salt was refined in parallel with this laboratory testing.
Date: February 1, 1999
Creator: Hansen, F.D.; Mellegard, K.D. & Pfeifle, T.W.
Partner: UNT Libraries Government Documents Department

Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

Description: The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics.
Date: June 1, 1998
Creator: Pfeifle, T. W. & Hurtado, L. D.
Partner: UNT Libraries Government Documents Department

Properties of dynamically compacted WIPP salt

Description: Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material.
Date: July 1, 1996
Creator: Brodsky, N.S.; Hansen, F.D. & Pfeifle, T.W.
Partner: UNT Libraries Government Documents Department

RATDAMPER - A Numerical Model for Coupling Mechanical and Hydrological Properties within the Disturbed Rock Zone at the Waste Isolation Pilot Plant

Description: A numerical model for predicting damage and permeability in the disturbed rock zone (DRZ) has been developed. The semi-empirical model predicts damage based on a function of stress tensor invariant. For a wide class of problems hydrologic/mechanical coupling is necessary for proper analysis. The RATDAMPER model incorporates dilatant volumetric strain and permeability. The RATDAMPER model has been implemented in a weakly coupled code, which combines a finite element structural code and a finite difference multi-phase fluid flow code. Using the development of inelastic volumetric strain, a value of permeability can be assigned. This flexibility allows empirical permeability functional relationships to be evaluated.
Date: November 27, 2000
Creator: RATH,JONATHAN S.; PFEIFLE,T.W. & HUNSCHE,U.
Partner: UNT Libraries Government Documents Department

Salt-saturated concrete strength and permeability

Description: Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 {times} 10{sup {minus}22} m{sup 2} to 9.7 {times} 10{sup {minus}17} m{sup 2}. Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members.
Date: November 1, 1996
Creator: Pfeifle, T.W.; Hansen, F.D. & Knowles, M.K.
Partner: UNT Libraries Government Documents Department

An Investigation of the Integrity of Cemented Casing Seals with Application to Salt Cavern Sealing and Abandonment

Description: This research project was pursued in three key areas. (1) Salt permeability testing under complex stress states; (2) Hydraulic and mechanical integrity investigations of the well casing shoe through benchscale testing; and (3) Geomechanical modeling of the fluid/salt hydraulic and mechanical interaction of a sealed cavern.
Date: April 19, 2001
Creator: Pfeifle, T.W.; Mellegard, K.D.; Skaug, N.T. & Bruno, M.S.
Partner: UNT Libraries Government Documents Department

Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt

Description: The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.
Date: March 1, 1998
Creator: Pfeifle, T.W.; Brodsky, N.S. & Munson, D.E.
Partner: UNT Libraries Government Documents Department

Consolidation, permeability, and strength of crushed salt/bentonite mixtures with application to the WIPP (Waste Isolation Pilot Plant)

Description: Three tests were performed to measure the consolidation, permeability, and compressive strength of specimens prepared from bentonite/crushed salt mixtures. Each mixture comprised 30% bentonite and 70% crushed salt based on total dry weight. Brine was added to each mixture to adjust its water content to either 5 or 10% (nominal) of the total dry weight of the mixture. In the consolidation tests, each specimen was subjected to multiple stages of successively higher hydrostatic stress (pressure). During each stage, the pressure was maintained at a constant level and volumetric strain data were continuously logged. By using multiple stages, consolidation data were obtained at several pressures and the time required to consolidate the specimens to full saturation was reduced. Once full saturation was achieved, each specimen was subjected to a final test stage in which the hydrostatic stress was reduced and a permeability test performed. Permeability was measured using the steady flow of brine and was found to range between 1 {times} 10{sup {minus}17} and 5 {times} 10{sup {minus}17} m{sup 2}. After the final test stage, unconfined compressive strength was determined for each specimen and was found to range between 0.5 and 8.1 MPa. Two constitutive models were fitted to the consolidation data. One relatively simple model related volumetric strain to time while the other related instantaneous density to time, pressure, and initial density. 8 refs., 9 figs., 8 tabs.
Date: January 1, 1991
Creator: Pfeifle, T.W. (RE/SPEC, Inc., Rapid City, SD (USA))
Partner: UNT Libraries Government Documents Department

Probability distributions for parameters of the Munson-Dawson salt creep model

Description: Stress-related probability distribution functions are determined for the random variable material model parameters of the Munson-Dawson multi-mechanism deformation creep model for salt. These functions are obtained indirectly from experimental creep data for clean salt. The parameter distribution functions will form the basis for numerical calculations to generate an appropriate distribution function for room closure. Also included is a table that gives the values of the parameters for individual specimens of clean salt under different stresses.
Date: December 31, 1993
Creator: Fossum, A. F.; Pfeifle, T. W.; Mellegard, K. D. & Munson, D. E.
Partner: UNT Libraries Government Documents Department

Evaluation of potential crushed-salt constitutive models

Description: Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.
Date: December 1, 1995
Creator: Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D. et al.
Partner: UNT Libraries Government Documents Department

WIPP shaft seal system parameters recommended to support compliance calculations

Description: The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system.
Date: December 1, 1997
Creator: Hurtado, L.D.; Knowles, M.K.; Kelley, V.A.; Jones, T.L.; Ogintz, J.B. & Pfeifle, T.W.
Partner: UNT Libraries Government Documents Department