6 Matching Results

Search Results

Advanced search parameters have been applied.

BASELINE PARAMETER UPDATE FOR HUMAN HEALTH INPUT AND TRANSFER FACTORS FOR RADIOLOGICAL PERFORMANCE ASSESSMENTS AT THE SAVANNAH RIVER SITE

Description: The purpose of this report is to update parameters utilized in Human Health Exposure calculations and Bioaccumulation Transfer Factors utilized at SRS for Performance Assessment modeling. The reason for the update is to utilize more recent information issued, validate information currently used and correct minor inconsistencies between modeling efforts performed in SRS contiguous areas of the heavy industrialized central site usage areas called the General Separations Area (GSA). SRS parameters utilized were compared to a number of other DOE facilities and generic national/global references to establish relevance of the parameters selected and/or verify the regional differences of the southeast USA. The parameters selected were specifically chosen to be expected values along with identifying a range for these values versus the overly conservative specification of parameters for estimating an annual dose to the maximum exposed individual (MEI). The end uses are to establish a standardized source for these parameters that is up to date with existing data and maintain it via review of any future issued national references to evaluate the need for changes as new information is released. These reviews are to be added to this document by revision.
Date: January 31, 2007
Creator: Coffield, T & Patricia Lee, P
Partner: UNT Libraries Government Documents Department

A GRADED APPROACH TO FLOW AND TRANSPORT MODELING TO SUPPORT DECOMMISSIONING ACTIVITIES AT THE SAVANNAH RIVER SITE, AIKEN SC

Description: A graded approach to flow and transport modeling has been used as a cost effective solution to evaluating potential groundwater risk in support of Deactivation and Decommissioning activities at the United States Department of Energy's Savannah River Site. This approach incorporates both simple spreadsheet calculations and complex numerical modeling to evaluate the threat to human health posed by contaminants leaching from decommissioned concrete building slabs. Simple spread sheet calculations were used to produce generic slab concentration limits for a suite of radiological and non-radiological contaminants for a chemical separations area at Savannah River Site. These limits, which are based upon the United States Environmental Protection Agency Soil Screening guidance, were used to eliminate most building slabs from further risk assessment. Of the more than 58 facilities located in the area, to date only one slab has been found to have a contaminant concentration in excess of the area specific slab limit. For this slab, a more rigorous numerical modeling effort was undertaken reducing the conservatisms inherent in the spreadsheet calculations. Using the more sophisticated numerical model, it was possible to show that the remaining contaminant of concern would not likely impact groundwater above drinking water standards.
Date: June 7, 2007
Creator: Dixon, K; Patricia Lee, P & Gregory Flach, G
Partner: UNT Libraries Government Documents Department

AREA FACTOR DETERMINATIONS FOR AN INDUSTRIAL WORKER EXPOSED TO A CONCRETE SLAB END-STATE

Description: The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik [1]. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D&D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with (1) the illustrative area factors provided in MARSSIM [2], (2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance [3], and (3) the hot spot criterion for field application provided in the RESRAD User's Manual [4].
Date: February 8, 2007
Creator: Jannik, T; Patricia Lee, P; Eduardo Farfan, E & Jesse Roach, J
Partner: UNT Libraries Government Documents Department

AUTOMATED INADVERTENT INTRUDER APPLICATION

Description: The Environmental Analysis and Performance Modeling group of Savannah River National Laboratory (SRNL) conducts performance assessments of the Savannah River Site (SRS) low-level waste facilities to meet the requirements of DOE Order 435.1. These performance assessments, which result in limits on the amounts of radiological substances that can be placed in the waste disposal facilities, consider numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. Inadvertent intruder analysis considers three distinct scenarios for exposure referred to as the agriculture scenario, the resident scenario, and the post-drilling scenario. Each of these scenarios has specific exposure pathways that contribute to the overall dose for the scenario. For the inadvertent intruder analysis, the calculation of dose for the exposure pathways is a relatively straightforward algebraic calculation that utilizes dose conversion factors. Prior to 2004, these calculations were performed using an Excel spreadsheet. However, design checks of the spreadsheet calculations revealed that errors could be introduced inadvertently when copying spreadsheet formulas cell by cell and finding these errors was tedious and time consuming. This weakness led to the specification of functional requirements to create a software application that would automate the calculations for inadvertent intruder analysis using a controlled source of input parameters. This software application, named the Automated Inadvertent Intruder Application, has undergone rigorous testing of the internal calculations and meets software QA requirements. The Automated Inadvertent Intruder Application was intended to replace the previous spreadsheet analyses with an automated application that was verified to produce the same calculations and results. The application was extended to calculate full decay chains for a given parent so that an intruder calculation could be performed without any input ...
Date: May 29, 2007
Creator: Koffman, L; Patricia Lee, P; Jim Cook, J & Elmer Wilhite, E
Partner: UNT Libraries Government Documents Department