53 Matching Results

Search Results

Advanced search parameters have been applied.

High temperature molten carbonate fuel cells

Description: Progress is reported on four tasks: (1) component development, (2) cell testing, (3) stack design and development, and (4) modeling and systems analysis. A hydrogen sintering furnace capable of producing 0.5 sq meter electrodes was installed and operating procedures are being established. To develop stabilized anode structures, a fine particle nickel-cobalt alloy powder was prepared from their hydroxide mixture through the steps of co-precipitation, spray-drying and reduction. Electrodes have been produced for small cell tests using this high surface area alloy powder. The in situ method of electrolyte preparation was studied in detail to establish the effect of various thermal treatments and to optimize the reagent processing and mixing techniques. DTA and TGA analysis were performed for the reaction mixture. Procedures were developed for the separate controlled syntheses of ..cap alpha..-..beta..-..gamma..-lithium aluminates. Metal fiber reinforced tiles were fabricated with fibers of different diameters, lengths and loadings. Equipment has been assembled to conduct potentiostatic corrosion tests on candidate materials for the cell frame and current collector. Efforts were directed towards improving anode and cathode structures, corrosion protection, wet seal efficiency, cell hardware design and thermal cycling capabilities. A steady performance has been achieved for 1300 hours, with the test continuing. (WHK)
Date: February 1, 1978
Creator: Baker, B.; Burns, D.; Dharia, D.; Herscovici, C.; Kinnibrugh, D.; Paetsch, L. et al.
Partner: UNT Libraries Government Documents Department

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes]

Description: This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.
Date: January 1, 1982
Creator: Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A. & Patel, P.
Partner: UNT Libraries Government Documents Department

Life-cycle energy analyses of electric vehicle storage batteries. Final report

Description: The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.
Date: December 1, 1980
Creator: Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J & Taylor, L
Partner: UNT Libraries Government Documents Department

Reaching Isochoric States of Matter by Ultrashort-Pulse Proton Heating

Description: The aim of this LDRD is to develop two completely new methods for creating and probing warm dense states of matter (plasmas at several eV at solid density), which will enable the direct measurement of fundamental material properties such as the opacity and equation of state (EOS). There is in this warm dense regime an almost complete lack of quantitative experimental data--primarily because of the difficulty in creating uniform, single temperature/density plasmas on which to make measurements. In an ideal case one would volumetrically heat a target with a very short burst of energy--simultaneously making measurements prior to the subsequent hydrodynamic expansion of the target. However, no mechanism for such rapid, uniform heating of a material currently exists. We propose to develop a completely new technique that has the potential for creating large uniform plasmas in local thermodynamic equilibrium (LTE) at warm dense conditions. This technique is based on volumetric heating of solid density targets with a high energy, high-flux, short-pulse, laser-produced proton beam. We also propose to use this beam of protons to probe high-Z, solid density matter with both 2-dimensional spatial resolution and picosecond temporal resolution. The combination of these two techniques will enable us to make the very first quantitative measurements of the equation of state and opacity of an isochorically heated state of matter.
Date: February 28, 2005
Creator: Patel, P. K.; Mackinnon, A. J.; Allen, M.; Foord, M. E.; Shepherd, R. & Price, D. F.
Partner: UNT Libraries Government Documents Department

FY06 LDRD Final Report "The Creation of a Neutron Star Atmosphere"

Description: We have taken the initiative to examine whether experiments on HED facilities, present and future, could achieve the extreme scaled conditions relevant to accreting neutron star atmospheres and accretion disks around black holes. The preliminary conclusion from this detailed scaling assessment is that if an exact scaled version of the photon bubble instability physics is desired, this will require experiments with (simultaneously) spatial scales of order {approx}1 mm, temperatures of order {approx}5 keV, magnetic fields of order a hundred megaGauss, and time scales of order several hundred psec. Aspects (subsets) of this physics can be studied under less demanding conditions. To achieve the temperatures required in targets of order several optical depths, we come to the preliminary conclusion that we would require an energy source that delivers of order of a megajoule of energy into a high Z target. A conceptual design for such an experiment could be to use the energy from a high gain ignition NIF capsule as our principle source of heating and acceleration whereby the target is in close proximity to the ignition capsule and then use external petawatt lasers to develop the magnetic fields required.
Date: March 1, 2007
Creator: Klein, R I; Remington, B; Moon, S; MacKinnon, A; Patel, P; Ruytov, D et al.
Partner: UNT Libraries Government Documents Department

A High Efficiency Grazing Incidence Pumped X-ray Laser

Description: The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating the shortest wavelength ...
Date: August 31, 2006
Creator: Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F & Shlyaptsev, V N
Partner: UNT Libraries Government Documents Department

A Computer Model for Direct Carbonate Fuel Cells

Description: A 3-D computer model, describing fluid flow, heat and mass transfer, and chemical and electrochemical reaction processes, has been developed for guiding the direct carbonate fuel cell (DFC) stack design. This model is able to analyze the direct internal reforming (DIR) as well as the integrated IIR (indirect internal reforming)-DIR designs. Reasonable agreements between computed and fuel cell tested results, such as flow variations, temperature distributions, cell potentials, and exhaust gas compositions as well as methane conversions, were obtained. Details of the model and comparisons of the modeling results with experimental DFC stack data are presented in the paper.
Date: April 1, 1997
Creator: Ding, J.; Patel, P.S.; Farooque, M. & Maru, H.C.
Partner: UNT Libraries Government Documents Department

Simultaneous Hot Gas Desulfurization and Improved Filtration

Description: This research suggests the use of waste metal oxide materials for the removal of sulfur in hot gas streams as an alternative to either traditional calcium based sorbents, or regenerable metal oxide sorbents. When classified to a desired particle size and injected into a high temperature coal utilization process, such a ``once-through`` sorbent can effectively remove sulfur and simultaneously increase the permeability of dust collected at a downstream ceramic filter station in a highly cost effective manner. There is considerable technical and economic promise in the use of waste metal oxides for the removal of sulfur dioxide (SO{sub 2}) and hydrogen sulfide (H{sub 2}S) from coal gas streams containing these components, based upon results from tests under controlled laboratory conditions. Several waste metal oxides, including the oxides of iron, tin, and zinc, have been evaluated both individually and in combination to assess their capacity for sulfur capture in both oxidizing and reducing atmospheres. Additionally, inert materials such as silica sand as well as more traditional materials such as dolomite and limestone, were evaluated as sorbents under identical test conditions to serve as reference data. Efforts also explored the overall domestic availability of the best performing waste metal oxide sorbents, taking into account their geographic distributions, intrinsic value, etc. to provide the groundwork for commercial implementation of a low cost, highly effective sulfur sorbent for eventual use in both coal combustion and coal gasification processes. Recent elevated temperature thermogravimetric analysis (TGA) testing of these samples, performed at the Institute of Gas Technology (IGT), has further confirmed the trends in sulfur affinity which were observed in the preliminary testing.
Date: December 31, 1996
Creator: Eggerstedt, P.M.; Zievers, J.F.; Patel, P.C. & Zievers, E.C.
Partner: UNT Libraries Government Documents Department

High-temperature molten-carbonate fuel cells. Technical progress report, July-September 1978

Description: Progress on the design, fabrication, and testing of nickel and nickel-cobalt electrodes, LiAlO/sub 2/ electrolyte powder, and electrolyte tiles is reported. Results of cell performance testing and systems analysis are presented and discussed. (WHK)
Date: November 1, 1978
Creator: Baker, B.; Burns, D.; Dharia, D.; Herscovici, C.; Leonida, A.; Paetsch, L. et al.
Partner: UNT Libraries Government Documents Department

HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

Description: We present experimental data of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using the Rutherford Appleton Laboratory Vulcan petawatt laser. These measurements were made using a CCD-based magnetic spectrometer. We present details on the distinct effective temperatures that were obtained for a wide variety of targets as a function of laser intensity. It is found that as the intensity increases from 10{sup 17} W/cm{sup 2} to 10{sup 19} W/cm{sup 2}, a 0.4 dependence on the laser intensity is found. Between 10{sup 19} W/cm{sup 2} and 10{sup 20} W/cm{sup 2}, a gradual rolling off of temperature with intensity is observed.
Date: December 8, 2005
Creator: Chen, H; Wilks, S C; Kruer, W L; Moon, S; Patel, N; Patel, P K et al.
Partner: UNT Libraries Government Documents Department

Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

Description: The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with {approx} 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010.
Date: February 8, 2008
Creator: Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M et al.
Partner: UNT Libraries Government Documents Department

Simultaneous hot desulfurization and improved filtration

Description: Coal reserves in the United States as well as abroad will remain unusable until technology is developed to meet both Clean Air Act mandates and New Source Performance Standards (NSPS) for particulate, SO{sub 2}, and NO{sub x}, emissions effectively and economically. Recent breakthroughs in particulate control, specifically ceramic filtration technology, have shown that NSPS limits on particulates can be achieved at high process temperatures, thereby minimizing thermal losses and system complexity. While both calcium based and regenerable metal oxide sorbents are currently utilized for sulfur mitigation, problems such as sintering, temperature limitations, physical attrition, and cost have limited their success. This research suggests the use of waste metal oxide materials for the removal of sulfur in hot gas streams as an alternative to either traditional calcium based sorbents, or regenerable metal oxide sorbents. When classified to a desired particle size and injected into a high temperature coal utilization process, such a `once-through` sorbent can effectively remove sulfur and simultaneously increase the permeability of dust collected at a downstream ceramic filter station in a highly cost effective manner. Several waste metal oxides, including the oxides of iron, tin, and zinc, have been evaluated both individually and in combination to assess their capacity for sulfur capture in both oxidizing and reducing atmospheres. Additionally, inert materials such as silica sand as well as more traditional materials such as dolomite and limestone, were evaluated as sorbents under identical test conditions to serve as reference data.
Date: January 1, 1998
Creator: Eggerstedt, P.M.; Zievers, J.F.; Patel, P.C. & Zievers, E.C., Industrial Fiber & Pump Mfg. Co.
Partner: UNT Libraries Government Documents Department

ERC Program Overview

Description: The carbonate fuel cell promises highly efficient, cost-effective, environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. ERC has been engaged in the development of this unique technology since the late 1970s, primarily focusing on the development of the Direct Fuel Cell (DFC) technology [1-6] pioneered by ERC. The DFC design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach provides upgrading of waste heat to chemical energy; thereby, it contributing to higher overall efficiency for conversion of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, ERC has selected the Indirect Internal Reforming (IIR) - Direct Internal Reforming (DIR) combination as its baseline design. ERC plans to offer commercial DFC power plants in various sizes, initially focusing on the MW-scale units. The plan is to offer standardized, packaged MW-scale DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale by the end of the decade. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed generation, industrial cogeneration, and uninterrupted power for military bases. After gaining experience from the early MW-scale power plants, and with maturing of the technology, ERC expects to introduce larger power plants operating on natural gas and/or coal gas or other fuels in the beginning of the 21st century. ERC has completed a technology program for product design verification, a predecessor of the current program, where the power plant design as well as the technology development were carried out to support a full-size field demonstration. These activities culminated in 130 kW stack tests in ERC's subscale power plant, ...
Date: August 1, 1996
Creator: Maru, H.; Farooque, M.; Carlson, G.; Patel, P.; Yuh, C.; Bentley, C. et al.
Partner: UNT Libraries Government Documents Department

An update of ERC's carbonate fuel cell development program

Description: Energy Research Corporation's molten carbonate fuel goals are commericalization of the MW-class natural gas units and 100 MW-class coal gas/natural gas dual fuel units (long-term). Accomplishments have been made in stack height scale-up, issues relevant to attaining a long useful life for the carbonate fuel cell have been resolved, and organizational and financial aspects of power plant demonstration have been addressed. 10 figs, 7 refs. (DLC)
Date: January 1, 1992
Creator: Farooque, M.; Bernard, R.; Doyon, J.; Paetsch, L.; Patel, P.; Skok, A. et al.
Partner: UNT Libraries Government Documents Department

Progress and prospects for an FI relevant point design

Description: The physics issues involved in scaling from sub ignition to high gain fast ignition are discussed. Successful point designs must collimate the electrons and minimize the stand off distance to avoid multi mega-joule ignition energies. Collimating B field configurations are identified and some initial designs are explored.
Date: November 2, 2011
Creator: Key, M; Amendt, P; Bellei, C; Clark, D; Cohen, B; Divol, L et al.
Partner: UNT Libraries Government Documents Department

A Bremsstrahlung Spectrometer using k-edge and Differential Filters with Image plate dosimeters

Description: A Bremsstrahlung spectrometer using k-edge and differential filtering has been used with Image Plate dosimeters to measure the x-ray fluence from short-pulse laser/target interactions. An electron spectrometer in front of the Bremsstrahlung spectrometer deflects electrons from the x-ray line of sight and simultaneously measures the electron spectrum. The response functions were modeled with the Monte Carlo code Integrated Tiger Series 3.0 and the dosimeters calibrated with radioactive sources. Electron distributions with slope temperatures in the MeV range are inferred from the Bremsstrahlung spectra.
Date: May 2, 2008
Creator: Chen, C; Mackinnon, A; Beg, F; Chen, H; Key, M; King, J A et al.
Partner: UNT Libraries Government Documents Department

Electron-Heated Target Temperature Measurements in Petawatt Laser Experiments Based on Extreme Ultraviolet Imaging and Spectroscopy

Description: Three independent methods (XUV spectroscopy, imaging at 68 eV and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultra-intense laser plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 eV and 256 eV photon energies were used to determine the rear surface temperature of planar CD targets. Temperatures were found to be in the 60-150 eV range, with good agreement between the three diagnostics.
Date: May 2, 2008
Creator: Ma, T; Beg, F; Macphee, A; Chung, H; Key, M; Mackinnon, A et al.
Partner: UNT Libraries Government Documents Department