13 Matching Results

Search Results

Advanced search parameters have been applied.

COMPRESSION WAVES AND PHASE PLOTS: SIMULATIONS

Description: Compression wave analysis started nearly 50 years ago with Fowles. Coperthwaite and Williams gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general. One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.
Date: August 1, 2011
Creator: Orlikowski, D & Minich, R
Partner: UNT Libraries Government Documents Department

First-principles thermoelasticity of transition metals at high pressure I. Tantalum prototype in the quasi-harmonic limit

Description: The thermoelastic properties of bcc tantalum have been investigated over a broad range of pressures (up to 10 Mbar) and temperatures (up to 26,000 K) using a new first-principles approach that accurately accounts for cold, electron-thermal, and ion-thermal contributions in materials where anharmonic effects are small. Specifically, we have combined ab initio full-potential linear-muffin-tin-orbital (FP-LMTO) electronic-structure calculations for the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal part calculated using model generalized pseudopotential theory (MGPT). For the latter, a summation of terms over the Brillouin zone is performed within the quasi-harmonic approximation, where each term is composed of a strain derivative of the phonon frequency at a particular k point. At ambient pressure, the resulting temperature dependence of the Ta elastic moduli is in excellent agreement with ultrasonic measurements. The experimentally observed anomalous behavior of C{sub 44} at low temperatures is shown to originate from the electron-thermal contribution. At higher temperatures, the main contribution to the temperature dependence of the elastic moduli comes from thermal expansion, but inclusion of the electron- and ion-thermal contributions is essential to obtain quantitative agreement with experiment. In addition, the pressure dependence of the moduli at ambient temperature compares well with recent diamond-anvil cell measurements to 1.05 Mbar. Moreover, the calculated longitudinal and bulk sound velocities in polycrystalline Ta at higher pressure and temperature in the vicinity of shock melting ({approx} 3 Mbar) agree well with data obtained from shock experiments. However, at high temperatures along the melt curve above 1 Mbar, the B{prime} shear modulus becomes negative indicating the onset of unexpectedly strong anharmonic effects. Finally, the assumed temperature dependence of the Steinberg-Guinan strength model obtained from scaling with the bulk shear modulus is examined at ambient pressure.
Date: April 25, 2006
Creator: Orlikowski, D; Soderlind, P & Moriarty, J A
Partner: UNT Libraries Government Documents Department

A Steinberg-Guinan model for High-Pressure Carbon, Diamond Phase

Description: Since the carbon, diamond phase has such a high yield strength, dynamic simulations must account for strength even for strong shock waves ({approx} 3 Mbar). We have determined an initial parametrization of two strength models: Steinberg-Guinan (SG) and a modified or improved SG, that captures the high pressure dependence of the calculated shear modulus up to 10 Mbar. The models are based upon available experimental data and on calculated elastic moduli using robust density functional theory. Additionally, we have evaluated these models using hydrodynamic simulations of planar shocks experiments.
Date: July 27, 2007
Creator: Orlikowski, D; Correa, A; Schwegler, E & Klepeis, J
Partner: UNT Libraries Government Documents Department

Specifically Prescribed Dynamic Thermodynamic Paths and Resolidification Experiments

Description: We describe here a series of dynamic compression experiments using impactors with specifically prescribed density profiles. Building upon previous impactor designs, we compose our functionally graded density impactors of materials whose densities vary from about 0.1 g/cc to more than 15 g/cc. These impactors, whose density profiles are not restricted to be monotonic, can be used to generate prescribed thermodynamic paths in the targets. These paths include quasi-isentropes as well as combinations of shock, rarefraction, and quasi-isentropic compression waves. The time-scale of these experiments ranges from nanoseconds to several microseconds. Strain-rates in the quasi-isentropic compression experiments vary from approximately 10{sup 4}s{sup -1} to 10{sup 6}s{sup -1}. We applied this quasi-isentropic compression technique to resolidify water where ice is at a higher temperature than the initial water sample. The particle velocity of quasi-isentropically compressed water exhibits a two-wave structure and sample thickness scales consistently with water-ice phase transition time. Experiments on resolidification of molten bismuth are also promising.
Date: November 19, 2003
Creator: Nguyen, J; Orlikowski, D; Streitz, F; Holmes, N & Moriarty, J
Partner: UNT Libraries Government Documents Department

First Principles Thermoelasticity of Tantalum at High Pressures

Description: The thermoelastic properties of bcc tantalum have been investigated over a broad range of temperatures (up to 12000 K) and pressures (up to 10 Mbar) using first-principles methods that account for cold, electron-thermal, and ion-thermal contributions. Specifically, we have combined ab initio all electron electronic-structure calculations for the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal part calculated using model generalized pseudopotential theory (MGPT). For the latter, a summation of terms over the Brillouin zone is performed within the quasi-harmonic approximation, where each term is composed of a strain derivative of the phonon frequency at a particular k-point. At ambient pressure, the resulting temperature dependence of the elastic moduli is in excellent agreement with ultrasonic measurements. The experimentally observed anomalous behavior of C44 at low temperatures is shown to originate from the electron-thermal contribution. At higher temperatures, the dominant contribution to the temperature dependence of the elastic moduli comes from thermal expansion. Also, the pressure dependence of the moduli compares well with recent diamond and cell measurements up to 105 GPa. The calculated longitudinal and bulk sound velocities at higher pressure and temperature agree well with data obtained from shock experiments. Additionally, the temperature dependence of the Steinberg-Guinan model is examined for ambient pressure.
Date: June 21, 2002
Creator: Orlikowski, D.A.; Soderlind, P. & Moriarty, J.
Partner: UNT Libraries Government Documents Department

Analyzing signatures of aerosol-cloud interactions from satelliteretrievals and the GISS GCM to constrain the aerosol indirecteffect

Description: Evidence of aerosol-cloud interactions are evaluated using satellite data from MODIS, CERES, AMSR-E, reanalysis data from NCEP and data from the NASA Goddard Institute for Space Studies climate model. We evaluate a series of model simulations: (1) Exp N- aerosol direct radiative effects; (2) Exp C- Like Exp N but with aerosol effects on liquid-phase cumulus and stratus clouds; (3) Exp CN- Like Exp C but with model wind fields nudged to reanalysis data. Comparison between satellite-retrieved data and model simulations for June to August 2002, over the Atlantic Ocean indicate the following: a negative correlation between aerosol optical thickness (AOT) and cloud droplet effective radius (R{sub eff}) for all cases and satellite data, except for Exp N; a weak but negative correlation between liquid water path (LWP) and AOT for MODIS and CERES; and a robust increase in cloud cover with AOT for both MODIS and CERES. In all simulations, there is a positive correlation between AOT and both cloud cover and LWP (except in the case of LWP-AOT for Exp CN). The largest slopes are obtained for Exp N, implying that meteorological variability may be an important factor. The main fields associated with AOT variability in NCEP/MODIS data are warmer temperatures and increased subsidence for less clean cases, not well captured by the model. Simulated cloud fields compared with an enhanced data product from MODIS and AMSR-E indicate that model cloud thickness is over-predicted and cloud droplet number is within retrieval uncertainties. Since LWP fields are comparable this implies an under-prediction of R{sub eff} and thus an over-prediction of the indirect effect.
Date: October 1, 2007
Creator: Menon, S.; Del Genio, A.D.; Kaufman, Y.; Bennartz, R.; Koch, D.; Loeb, N. et al.
Partner: UNT Libraries Government Documents Department

New experimental capabilities and theoretical insights of high pressure compression waves

Description: Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. A gradient impedance through the length of the impactor provides the pressure pulse upon impactor to the subject material. Applications and results are given concerning high-pressure strength and liquid to solid, phase transition of water plus its associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution these RWC waves that propagate through the thickness of the subject material. This equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possible quantifiable dissipation, through which RWC experiments may be analyzed.
Date: July 20, 2007
Creator: Orlikowski, D; Nguyen, J; Patterson, J R; Minich, R; Martin, L P & Holmes, N
Partner: UNT Libraries Government Documents Department

High-Pressure Tailored Compression: Controlled Thermodynamic Paths

Description: We have recently carried out novel and exploratory dynamic experiments where the sample follows a prescribed thermodynamic path. In typical dynamic compression experiments, the samples are thermodynamically limited to the principal Hugoniot or quasi-isentrope. With recent developments in the functionally graded material impactor, we can prescribe and shape the applied pressure profile with similarly-shaped, non-monotonic impedance profile in the impactor. Previously inaccessible thermodynamic states beyond the quasi-isentropes and Hugoniot can now be reached in dynamic experiments with these impactors. In the light gas-gun experiments on copper reported here, we recorded the particle velocities of the Cu-LiF interfaces and employed hydrodynamic simulations to relate them to the thermodynamic phase diagram. Peak pressures for these experiments were on the order of megabars, and the time-scales ranged from nanoseconds to several microseconds. The strain rates of the quasi-isentropic experiments are approximately 10{sup 4} s{sup -1} to 10{sup 6} s{sup -1} in samples with thicknesses up to 5 mm. Though developed at a light-gas gun facility, such shaped pressure-profiles are also feasible in principle with laser ablation or magnetic driven compression techniques allowing for new directions to be taken in high pressure physics.
Date: October 21, 2005
Creator: Nguyen, J H; Orlikowski, D; Streitz, F H; Moriarty, J A & Holmes, N C
Partner: UNT Libraries Government Documents Department

DYNAMIC RESPONSE OF COPPER SUBJECTED TO QUASI-ISENTROPIC, GAS-GUN DRIVEN LOADING

Description: A transmission electron microscopy study of quasi-isentropic high-pressure loading (peak pressures between 18 GPa and 52 GPa) of polycrystalline and monocrystalline copper was carried out. Deformation mechanisms and defect substructures at different pressures were analyzed. Current evidence suggests a deformation substructure consisting of twinning at the higher pressures and heavily dislocated laths and dislocation cells at the intermediate and lower pressures, respectively. Evidence of stacking faults at the intermediate pressures was also found. Dislocation cell sizes decreased with increasing pressure and increased with distance away from the surface of impact.
Date: September 29, 2005
Creator: Jarmakani, H; McNaney, J M; Schneider, M S; Orlikowski, D; Nguyen, J H; Kad, B et al.
Partner: UNT Libraries Government Documents Department

DYNAMIC RESPONSE OF SINGLE CRYSTALLINE COPPER SUBJECTED TO QUASI-ISENTROPIC, GAS-GUN DRIVEN LOADING

Description: A transmission electron microscopy study of quasi-isentropic gas-gun loading (peak pressures between 18 GPa and 52 GPa) of [001] monocrystalline copper was carried out. The defect substructures at these different pressures were analyzed. Current experimental evidence suggests a deformation substructure that transitions from slip to twinning, where twinning occurs at the higher pressures ({approx}52 GPa), and heavily dislocated laths and dislocation cells take place at the intermediate and lower pressures. Evidence of stacking faults at the intermediate pressures was also found. Dislocation cell sizes decreased with increasing pressure and increased with distance away from the surface of impact. The results from the quasi-isentropic experiments are compared with that of flyer-plate and laser shock experiments carried out by Cao et al. [1] and Schneider et al. [2], respectively. The Preston-Tonks-Wallace and Zerilli-Armstrong constitutive descriptions are used to model both isentropic and shock compression experiments and predict the pressure at which the slip-twinning transition occurs in both cases. Both models predict a higher transition for isentropic then for shock experiments, and indeed, that twinning should not take place in the ICE experiments at the pressures investigated.
Date: November 2, 2005
Creator: Jarmakani, H; Mc Naney, J M; Schneider, M S; Cao, B Y; Orlikowski, D; Nguyen, J H et al.
Partner: UNT Libraries Government Documents Department

Quantum-Based Atomistic Simulation of Metals at Extreme Conditions

Description: First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for bridging the quantum-atomistic gap from density-functional quantum mechanics to large scale atomistic simulation in metals and alloys. In directionally-bonded bcc transition metals, advanced generation model GPT or MGPT potentials based on canonical d bands have been developed for Ta, Mo and V and successfully applied to a wide range of thermodynamic and mechanical properties at both ambient and extreme conditions of pressure and temperature, including high-pressure phase transitions, multiphase equation of state; melting and solidification; thermoelasticity; and the atomistic simulation of point defects, dislocations and grain boundaries needed for the multiscale modeling of plasticity and strength. Recent algorithm improvements have also allowed an MGPT implementation beyond canonical bands to achieve increased accuracy, extension to f-electron actinide metals, and high computational speed. A further advance in progress is the development temperature-dependent MGPT potentials that subsume electron-thermal contributions to high-temperature properties.
Date: January 15, 2008
Creator: Moriarty, J A; Glosli, J N; Hood, R Q; Klepeis, J E; Orlikowski, D A; Soderlind, P et al.
Partner: UNT Libraries Government Documents Department

Quantum-based Atomistic Simulation of Transition Metals

Description: First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials.
Date: August 29, 2005
Creator: Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V et al.
Partner: UNT Libraries Government Documents Department

Robust Quantum-Based Interatomic Potentials for Multiscale Modeling in Transition Metals

Description: First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in transition metals and alloys within density-functional quantum mechanics. In the central bcc metals, where multi-ion angular forces are important to materials properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions. Selected applications to multiscale modeling discussed here include dislocation core structure and mobility, atomistically informed dislocation dynamics simulations of plasticity, and thermoelasticity and high-pressure strength modeling. Recent algorithm improvements have provided a more general matrix representation of MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed for dynamic simulations, and the development of temperature-dependent potentials.
Date: September 27, 2005
Creator: Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V et al.
Partner: UNT Libraries Government Documents Department