2 Matching Results

Search Results

Advanced search parameters have been applied.

Thin film conductive polymer for microactuator and micromuscle applications

Description: Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.
Date: April 14, 1994
Creator: Lee, A.P.; Hong, K.; Trevino, J. & Northrup, M.A.
Partner: UNT Libraries Government Documents Department

A MEMS-based miniature DNA analysis system

Description: We detail the design and development of a miniature thermal cycling instrument for performing the polymerase chain reaction (PCR) that uses microfabricated, silicon-based reaction chambers. The MEMS-based, battery-operated instrument shows significant improvements over commercial thermal cycling instrumentation. Several different biological systems have been amplified and verified with the miniature PCR instrument including the Human Immunodeficiency Virus; both cloned and genomic DNA templates of {beta} globin; and the genetic disease, Cystic Fibrosis from human DNA. The miniaturization of a PCR thermal cycler is the initial module of a fully-integrated portable, low-power, rapid, and highly efficient bioanalytical instrument.
Date: April 25, 1995
Creator: Northrup, M.A.; Gonzalez, C. & Hadley, D.
Partner: UNT Libraries Government Documents Department