7 Matching Results

Search Results

Advanced search parameters have been applied.

Thermal neutron imaging in an active interrogation environment

Description: We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.
Date: March 10, 2009
Creator: Vanier,P.E. & Forman, L., and Norman, D.R.
Partner: UNT Libraries Government Documents Department

Coincidence/Multiplicity Photofission Measurements

Description: An series of experiments using the Idaho National Laboratory (INL) photonuclear inspection system and a Los Alamos National Laboratory (LANL)-supplied, list-mode data acquisition method have shown enhanced performance utilizing pulsed photofission-induced, neutron coincidence counting between pulses of an up-to-10-MeV electron accelerator for nuclear material detection and identification. The enhanced inspection methodology has applicability to homeland security, treaty-related support, and weapon dismantlement applications. For the latter, this technology can directly support of Department of Energy/NA241 programmatic mission objectives relative to future Rocky Ridge-type testing campaigns for active inspection systems.
Date: September 1, 2009
Creator: Jones, J.L.; Swinhoe, M.T.; Tobin, S.J.; Geist, W. H.; Norman, D.R.; Rothrock, R.B. et al.
Partner: UNT Libraries Government Documents Department

Time-Dependent Delayed Signatures From Energetic Photon Interrogations

Description: A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.
Date: August 1, 2006
Creator: Norman, D. R.; Jones, J. L.; Blackburn, B. W.; Watson, S. M. & Haskell, K. J.
Partner: UNT Libraries Government Documents Department

Detection of Shielded Nuclear Material in a Cargo Container

Description: The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved
Date: June 1, 2005
Creator: Jones, J. L.; Norman, D. R.; Haskell, K. J.; Sterbentz, J. W.; Yoon, W. Y.; Watson, S. M. et al.
Partner: UNT Libraries Government Documents Department

Enhanced Photofission-based, Coincidence/Multiplicity Inspection Measurements

Description: An enhanced active interrogation system has been developed that integrates a transportable Idaho National Laboratory (INL) photonuclear inspection system, using a pulsed bremsstrahlung source and a reconfigurable neutron detection system, with a Los Alamos National Laboratory (LANL) list-mode data acquisition system. A series of active interrogation experiments have shown enhanced nuclear material detection and identification utilizing pulsed photofission-induced, neutron coincidence/multiplicity counting between pulses of an up-to-10-MeV electron accelerator. This paper describes the integrated inspection system and presents some key shielded and unshielded nuclear material inspection results. The enhanced inspection methodology has applicability to homeland security and possible nuclear weapon dismantlement treaties.
Date: July 1, 2010
Creator: Jones, J.L.; Norman, D.R.; Haskell, K.J.; Swinhoe, M.T.; Tobin, S.J.; Geist, W.H. et al.
Partner: UNT Libraries Government Documents Department

Pulsed Photonuclear Assessment (PPA) Technique: CY 04 Year-end Progress Report

Description: Idaho National Laboratory (INL), along with Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC), are developing an electron accelerator-based, photonuclear inspection technology for the detection of smuggled nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This CY04 report describes the latest developments and progress with the development of the Pulsed, Photonuclear Assessment (PPA) nuclear material inspection ystem, such as: (1) the identification of an optimal range of electron beam energies for interrogation applications, (2) the development of a new “cabinet safe” electron accelerator (i.e., Varitron II) to assess “cabinet safe-type” operations, (3) the numerical and experimental validation responses of nuclear materials placed within selected cargo configurations, 4) the fabrication and utilization of Calibration Pallets for inspection technology performance verification, 5) the initial technology integration of basic radiographic “imaging/mapping” with induced neutron and gamma-ray detection, 6) the characterization of electron beam-generated photon sources for optimal performance, 7) the development of experimentallydetermined Receiver-Operator-Characterization curves, and 8) several other system component assessments. This project is supported by the Department of Homeland Security and is a technology component of the Science & Technology Active Interrogation Portfolio entitled “Photofission-based Nuclear Material Detection and Characterization.”
Date: May 1, 2005
Creator: Jones, J.L.; Yoon, W.Y.; Haskell, K.J.; Norman, D.R.; Zabriskie, J.M.; Sterbentz, J.W. et al.
Partner: UNT Libraries Government Documents Department

Pulsed Photonuclear Assessment (PPA) Technique: CY-05 Project Summary Report

Description: Idaho National Laboratory, along with Idaho State University’s Idaho Accelerator Center and Los Alamos National Laboratory, is developing an electron accelerator-based, photonuclear inspection technology, called the Pulsed Photonuclear Assessment (PPA) system, for the detection of nuclear material concealed within air-, rail-, and, primarily, maritime-cargo transportation containers. This report summarizes the advances and progress of the system’s development in 2005. The contents of this report include an overview of the prototype inspection system, selected Receiver-Operator-Characteristic curves for system detection performance characterization, a description of the approach used to integrate the three major detection components of the PPA inspection system, highlights of the gray-scale density mapping technique being used for significant shield material detection, and higher electron beam energy detection results to support an evaluation for an optimal interrogating beam energy. This project is supported by the Department of Homeland Security Office of Research and Development and, more recently, the Domestic Nuclear Detection Office.
Date: December 1, 2005
Creator: Jones, J.L.; Bennett, B.D.; Haskell, K.J.; Johnson, J.T.; Norman, D.R.; Sterbentz, J.W. et al.
Partner: UNT Libraries Government Documents Department