25 Matching Results

Search Results

Advanced search parameters have been applied.

The Mean Integral

Description: The purpose of this paper is to examine properties of the mean integral. The mean integral is compared with the regular integral. If [a;b] is an interval, f is quasicontinuous on [a;b] and g has bounded variation on [a;b], then the man integral of f with respect to g exists on [a;b]. The following theorem is proved. If [a*;b*] and [a;b] each is an interval and h is a function from [a*;b*] into R, then the following two statements are equivalent: 1) If f is a function from [a;b] into [a*;b*], gi is a function from [a;b] into R with bounded variation and (m)∫^b_afdg exists then (m)∫^b_ah(f)dg exists. 2) h is continuous.
Date: December 1985
Creator: Spear, Donald W.
Partner: UNT Libraries

Compact Operators and the Schrödinger Equation

Description: In this thesis I look at the theory of compact operators in a general Hilbert space, as well as the inverse of the Hamiltonian operator in the specific case of L2[a,b]. I show that this inverse is a compact, positive, and bounded linear operator. Also the eigenfunctions of this operator form a basis for the space of continuous functions as a subspace of L2[a,b]. A numerical method is proposed to solve for these eigenfunctions when the Hamiltonian is considered as an operator on Rn. The paper finishes with a discussion of examples of Schrödinger equations and the solutions.
Date: December 2006
Creator: Kazemi, Parimah
Partner: UNT Libraries

A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

Description: In this work I present a constructive method for finding critical points of the Ginzburg-Landau energy functional using the method of Sobolev gradients. I give a description of the construction of the Sobolev gradient and obtain convergence results for continuous steepest descent with this gradient. I study the Ginzburg-Landau functional with magnetic field and the Ginzburg-Landau functional without magnetic field. I then present the numerical results I obtained by using steepest descent with the discretized Sobolev gradient.
Date: August 2008
Creator: Kazemi, Parimah
Partner: UNT Libraries

Iterative Solution of Linear Boundary Value Problems

Description: The investigation is initially a continuation of Neuberger's work on linear boundary value problems. A very general iterative procedure for solution of these problems is described. The alternating-projection theorem of von Neumann is the mathematical starting point for this study. Later theorems demonstrate the validity of numerical approximation for Neuberger's method under certain conditions. A sampling of differential equations within the scope of our iterative method is given. The numerical evidence is that the procedure works well on neutral-state equations, for which no software is written now.
Date: August 1983
Creator: Walsh, John Breslin
Partner: UNT Libraries

Convexity-Preserving Scattered Data Interpolation

Description: Surface fitting methods play an important role in many scientific fields as well as in computer aided geometric design. The problem treated here is that of constructing a smooth surface that interpolates data values associated with scattered nodes in the plane. The data is said to be convex if there exists a convex interpolant. The problem of convexity-preserving interpolation is to determine if the data is convex, and construct a convex interpolant if it exists.
Date: December 1995
Creator: Leung, Nim Keung
Partner: UNT Libraries

A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces

Description: We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential equations, second order ordinary differential equations which have variational principles, and one partial differential equation.
Date: August 1995
Creator: Mahavier, William Ted
Partner: UNT Libraries

Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

Description: In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
Date: December 1990
Creator: Ali, Ismail, 1961-
Partner: UNT Libraries

Explicit Multidimensional Solitary Waves

Description: In this paper we construct explicit examples of solutions to certain nonlinear wave equations. These semilinear equations are the simplest equations known to possess localized solitary waves in more that one spatial dimension. We construct explicit localized standing wave solutions, which generate multidimensional localized traveling solitary waves under the action of velocity boosts. We study the case of two spatial dimensions and a piecewise-linear nonlinearity. We obtain a large subset of the infinite family of standing waves, and we exhibit several interesting features of the family. Our solutions include solitary waves that carry nonzero angular momenta in their rest frames. The spatial profiles of these solutions also furnish examples of symmetry breaking for nonlinear elliptic equations.
Date: August 1990
Creator: King, Gregory B. (Gregory Blaine)
Partner: UNT Libraries

Hyperbolic Monge-Ampère Equation

Description: In this paper we use the Sobolev steepest descent method introduced by John W. Neuberger to solve the hyperbolic Monge-Ampère equation. First, we use the discrete Sobolev steepest descent method to find numerical solutions; we use several initial guesses, and explore the effect of some imposed boundary conditions on the solutions. Next, we prove convergence of the continuous Sobolev steepest descent to show local existence of solutions to the hyperbolic Monge-Ampère equation. Finally, we prove some results on the Sobolev gradients that mainly arise from general nonlinear differential equations.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2006
Creator: Howard, Tamani M.
Partner: UNT Libraries

Nonlinear Boundary Conditions in Sobolev Spaces

Description: The method of dual steepest descent is used to solve ordinary differential equations with nonlinear boundary conditions. A general boundary condition is B(u) = 0 where where B is a continuous functional on the nth order Sobolev space Hn[0.1J. If F:HnCO,l] —• L2[0,1] represents a 2 differential equation, define *(u) = 1/2 IIF < u) li and £(u) = 1/2 l!B(u)ll2. Steepest descent is applied to the functional 2 £ a * + £. Two special cases are considered. If f:lR —• R is C^(2), a Type I boundary condition is defined by B(u) = f(u(0),u(1)). Given K: [0,1}xR—•and g: [0,1] —• R of bounded variation, a Type II boundary condition is B(u) = ƒ1/0K(x,u(x))dg(x).
Date: December 1984
Creator: Richardson, Walter Brown
Partner: UNT Libraries

Finite Element Solutions to Nonlinear Partial Differential Equations

Description: This paper develops a numerical algorithm that produces finite element solutions for a broad class of partial differential equations. The method is based on steepest descent methods in the Sobolev space H¹(Ω). Although the method may be applied in more general settings, we consider only differential equations that may be written as a first order quasi-linear system. The method is developed in a Hilbert space setting where strong convergence is established for part of the iteration. We also prove convergence for an inner iteration in the finite element setting. The method is demonstrated on Burger's equation and the Navier-Stokes equations as applied to the square cavity flow problem. Numerical evidence suggests that the accuracy of the method is second order,. A documented listing of the FORTRAN code for the Navier-Stokes equations is included.
Date: August 1981
Creator: Beasley, Craig J. (Craig Jackson)
Partner: UNT Libraries

Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints

Description: The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of gradients are explored. A theorem relating the B-gradient to the theory of Lagrange multipliers is stated as well. Basic theorems regarding the continuous steepest descent given by the Sobolev and B-gradients are stated in Chapter 4, and conditions for convergence in the application to the liquid crystal problem are given as well. Finally, in Chapter 5, the algorithm is described and numerical results are examined.
Date: August 1994
Creator: Garza, Javier, 1965-
Partner: UNT Libraries

Steepest Sescent on a Uniformly Convex Space

Description: This paper contains four main ideas. First, it shows global existence for the steepest descent in the uniformly convex setting. Secondly, it shows existence of critical points for convex functions defined on uniformly convex spaces. Thirdly, it shows an isomorphism between the dual space of H^{1,p}[0,1] and the space H^{1,q}[0,1] where p > 2 and {1/p} + {1/q} = 1. Fourthly, it shows how the Beurling-Denny theorem can be extended to find a useful function from H^{1,p}[0,1] to L_{p}[1,0] where p > 2 and addresses the problem of using that function to establish a relationship between the ordinary and the Sobolev gradients. The paper contains some numerical experiments and two computer codes.
Date: August 1995
Creator: Zahran, Mohamad M.
Partner: UNT Libraries

Generalized Function Solutions to Nonlinear Wave Equations with Distribution Initial Data

Description: In this study, we consider the generalized function solutions to nonlinear wave equation with distribution initial data. J. F. Colombeau shows that the initial value problem u_tt - Δu = F(u); m(x,0) = U_0; u_t (x,0) = i_1 where the initial data u_0 and u_1 are generalized functions, has a unique generalized function solution u. Here we take a specific F and specific distributions u_0, u_1 then inspect the generalized function representatives for the initial value problem solution to see if the generalized function solution is a distribution or is more singular. Using the numerical technics, we show for specific F and specific distribution initial data u_0, u_1, there is no distribution solution.
Date: August 1996
Creator: Kim, Jongchul
Partner: UNT Libraries

Hausdorff, Packing and Capacity Dimensions

Description: In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that the constant times the Hausdorff measure is greater than or equal to the packing measure when a subset of the realization is evaluated. Self—affine Sierpinski carpets, which have been analyzed by McMullen with respect to their Hausdorff dimension and capacity dimension, are analyzed with respect to their packing dimension. Conditions under which the Hausdorff measure of the construction object is positive and finite are given.
Date: August 1989
Creator: Spear, Donald W.
Partner: UNT Libraries

The Reciprocal Dunford-Pettis and Radon-Nikodym Properties in Banach Spaces

Description: In this paper we give a characterization theorem for the reciprocal Dunford-Pettis property as defined by Grothendieck. The relationship of this property to Pelczynski's property V is examined. In particular it is shown that every Banach space with property V has the reciprocal Dunford-Pettis property and an example is given to show that the converse fails to hold. Moreover the characterizations of property V and the reciprocal Dunford-Pettis property lead to the definitions of property V* and property RDP* respectively. Me compare and contrast results for the reciprocal Dunford-Pettis property and property RDP* with those for properties V and V*. In the final chapter we use a result of Brooks to obtain a characterization for the Radon-Nikodým property.
Date: August 1984
Creator: Leavelle, Tommy L. (Tommy Lee)
Partner: UNT Libraries

The Steepest Descent Method Using Finite Elements for Systems of Nonlinear Partial Differential Equations

Description: The purpose of this paper is to develop a general method for using Finite Elements in the Steepest Descent Method. The main application is to a partial differential equation for a Transonic Flow Problem. It is also applied to Burger's equation, Laplace's equation and the minimal surface equation. The entire method is tested by computer runs which give satisfactory results. The validity of certain of the procedures used are proved theoretically. The way that the writer handles finite elements is quite different from traditional finite element methods. The variational principle is not needed. The theory is based upon the calculation of a matrix representation of operators in the gradient of a certain functional. Systematic use is made of local interpolation functions.
Date: August 1981
Creator: Liaw, Mou-yung Morris
Partner: UNT Libraries

Measurable Selection Theorems for Partitions of Polish Spaces into Gδ Equivalence Classes

Description: Let X be a Polish space and Q a measurable partition of X into Gδ equivalence classes. In 1978, S. M. Srivastava proved the existence of a Borel cross section for Q. He asked whether more can be concluded in case each equivalence class is uncountable. This question is answered here in the affirmative. The main result of the author is a proof that shows the existence of a Castaing Representation for Q.
Date: May 1980
Creator: Simrin, Harry S.
Partner: UNT Libraries

Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions

Description: In leading up to the proof, methods for constructing fields and finitely additive set functions are introduced with an application involving the Tagaki function given as an example. Also, non-absolutely continuous set functions are constructed using Banach limits and maximal filters.
Date: May 1989
Creator: Gurney, David R. (David Robert)
Partner: UNT Libraries