Search Results

Advanced search parameters have been applied.

Recovery and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Report: October-December 2003

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.
Date: April 1, 2004
Creator: Nakamura, Takashi
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Report: October-December 2002

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.
Date: April 2003
Creator: Nakamura, Takashi
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of co2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Progress Report: April-June 2004

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.
Date: November 2004
Creator: Nakamura, Takashi
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of co2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Progress Report: April-June 2003

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI delivered its coal reactor to Aquasearch. Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started their effort on economic analyses of commercial scale photobioreactor. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.
Date: September 1, 2003
Creator: Nakamura, Takashi
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Report: January-March 2004

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.
Date: July 1, 2004
Creator: Nakamura, Takashi; Olaizola, Miguel & Masutani, Stephen M.
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of co2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Progress Report: July-September 2004

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.
Date: December 2004
Creator: Nakamura, Takashi; Olaizola, Miguel & Masutani, Stephen M.
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae, Quarterly Technical Report: October-December 2004

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.
Date: March 2005
Creator: Nakamura, Takashi; Olaizola, Miguel & Masutani, Stephen M.
Partner: UNT Libraries Government Documents Department

Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae Quarterly Technical Progress Report: Number 12

Description: Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.
Date: November 1, 2003
Creator: Nakamura, Takashi; Olaizola, Miguel & Masutani, Stephen M.
Partner: UNT Libraries Government Documents Department

Neutron Production Measurements Relevant to Shielding forSpace-Related Activities

Description: Neutron production cross sections have been measured from290 MeV/nucleon C and 600 MeV/nucleon Ne interacting in a slab ofsimulated Martian regolith/polyethylene composite, and from 400MeV/nucleon Ne interacting in a section of wall materials from theInternational Space Station. Neutron spectra were measured at 7 anglesbetween 5 degrees and 80 degrees, and for neutron energies 5 MeV andgreater. Spectra at forward angles are dominated by the breakup of theprojectile, whereas spectra at back angles show the typical exponentialfalloff with energy that is indicative of decay from the overlap regionand the target remnant. The measured total neutron production crosssections indicate that the regolith/polyethylene composite may be a moreeffective shielding material than the ISS wall materials, in terms of thenumber of neutrons produced.
Date: April 9, 2002
Creator: Heilbronn, Lawrence; Iwata, Yoshiyuki; Murakami, Takeshi; Iwase, Hiroshi; Nakamura, Takashi; Sato, Hisaki et al.
Partner: UNT Libraries Government Documents Department

High Energy Neutrinos and Cosmic-Rays From Low-Luminosity Gamma-Ray Bursts?

Description: The recently discovered gamma-ray burst (GRB) 060218/SN 2006aj is classified as an X-ray Flash with very long duration driven possibly by a neutron star. Since GRB 060218 is very near {approx} 140 Mpc and very dim, one-year observation by Swift suggests that the true rate of GRB 060218-like events might be very high so that such low luminosity GRBs (LL-GRBs) might form a different population of GRBs from the cosmological high luminosity GRBs (HL-GRBs). We found that the high energy neutrino background from such LL-GRBs could be comparable with or larger than that from HL-GRBs. If each neutrino event is detected by IceCube, later optical-infrared follow-up observations such as by Subaru could identify a Type Ibc supernova associated with LL-GRBs, even if gamma- and X-rays are not observed by Swift. This is in a sense a new window from neutrino astronomy, which might enable us to confirm the existence of LL-GRBs and to obtain information about their rate and origin. We also argue LL-GRBs as high energy gamma-ray and cosmic-ray sources.
Date: July 10, 2006
Creator: Murase, Kohta; /Kyoto U., Yukawa Inst., Kyoto; Ioka, Kunihito; U., /Kyoto; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park et al.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen