5 Matching Results

Search Results

Advanced search parameters have been applied.

ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

Description: This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report describes eleven investigations on various aspects of the system. Taken as a whole, they confirm the technical feasibility of this technology.
Date: September 1, 2002
Creator: Wood, Byard D. & Muhs, Jeff D.
Partner: UNT Libraries Government Documents Department

ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

Description: This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system: (1) Performance specifications were developed for the tracking subsystem and collector optics, (2) Thermal management experiments for the fiber optic bundle entrance region, and (3) Bioreactor testing, cost-modeling, and redesign. Much of the planned work has been slowed due to significant procurement delays of the primary mirror. However, taken as a whole, they do confirm progress towards the technical feasibility and commercial viability of this technology. Due to this procurement delay, a no-cost extension of the project completion date has been requested and approved.
Date: February 1, 2005
Creator: Wood, Byard D. & Muhs, Jeff D.
Partner: UNT Libraries Government Documents Department

ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

Description: This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports daylight from a paraboloidal dish concentrator to a luminaire via a bundle of small core or a large core polymer fiber optics. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of daylighting and electric lighting for space/task lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. For the second generation (alpha) system, the secondary mirror is an ellipsoidal mirror that directs the visible light into a bundle of small-core fibers. The IR spectrum is filtered out to minimize unnecessary heating at the fiber entrance region. This report describes the following investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility and commercial viability of this technology. (1) TRNSYS Modeling of a Hybrid Lighting System: Building Energy Loads and Chromaticity Analysis; (2) High Lumens Screening Test Setup for Optical Fibers; (3) Photo-Induced Heating in Plastic Optical Fiber Bundles; (4) Low-Cost Primary Mirror Development; (5) Potential Applications for Hybrid Solar Lighting; (6) Photobioreactor Population Experiments and Productivity Measurements; and (7) Development of a Microalgal CO2-Biofixation Photobioreactor.
Date: August 1, 2004
Creator: Wood, Byard D. & Muhs, Jeff D.
Partner: UNT Libraries Government Documents Department

ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

Description: This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report emphasizes the design of the thermophotovoltaic receiver and the whole system simulation model.
Date: October 1, 2003
Creator: Wood, Byard D. & Muhs, Jeff D.
Partner: UNT Libraries Government Documents Department

ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS CROSS-CUTTING R&D ON ADAPTIVE FULL-SPECTRUM SOLAR ENERGY SYSTEMS FOR MORE EFFICIENT AND AFFORDABLE USE OF SOLAR ENERGY IN BUILDINGS AND HYBRID PHOTOBIOREACTORS

Description: This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports day light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of day lighting and fluorescent lighting for office lighting. In this project, the sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. The secondary mirror consists of eight planar-segmented mirrors that direct the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic array to produce electricity. This report describes several investigations of various aspects of the system. Taken as a whole, they confirm significant progress towards the technical feasibility of this technology.
Date: January 1, 2003
Creator: Wood, Byard D. & Muhs, Jeff D.
Partner: UNT Libraries Government Documents Department