20 Matching Results

Search Results

Advanced search parameters have been applied.

FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: May 1, 2004
Creator: Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: July 1, 2004
Creator: Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: May 1, 2004
Creator: Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates

Description: About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.
Date: April 1, 2006
Creator: Morrow, Norman R. & Buckley, Jill
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.
Date: January 1, 2006
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: This first semiannual report covers efforts to select the materials that will be used in this project. Discussions of crude oils, rocks, smooth mineral surfaces, and drilling mud additives are included in this report.
Date: June 1, 2002
Creator: Buckley, Jill S. & Morrow, Norman r.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: We report on progress in three areas. In part one, the wetting effects of synthetic base oils are reported. Part two reports progress in understanding the effects of surfactants of known chemical structures, and part three integrates the results from surface and core tests that show the wetting effects of commercial surfactant products used in synthetic and traditional oil-based drilling fluids. An important difference between synthetic and traditional oil-based muds (SBM and OBM, respectively) is the elimination of aromatics from the base oil to meet environmental regulations. The base oils used include dearomatized mineral oils, linear alpha-olefins, internal olefins, and esters. We show in part one that all of these materials except the esters can, at sufficiently high concentrations, destabilize asphaltenes. The effects of asphaltenes on wetting are in part related to their stability. Although asphaltenes have some tendency to adsorb on solid surfaces from a good solvent, that tendency can be much increased near the onset of asphaltene instability. Tests in Berea sandstone cores demonstrate wetting alteration toward less water-wet conditions that occurs when a crude oil is displaced by paraffinic and olefinic SBM base oils, whereas exposure to the ester products has little effect on wetting properties of the cores. Microscopic observations with atomic forces microscopy (AFM) and macroscopic contact angle measurements have been used in part 2 to explore the effects on wetting of mica surfaces using oil-soluble polyethoxylated amine surfactants with varying hydrocarbon chain lengths and extent of ethoxylation. In the absence of water, only weak adsorption occurs. Much stronger, pH-dependent adsorption was observed when water was present. Varying hydrocarbon chain length had little or no effect on adsorption, whereas varying extent of ethoxylation had a much more significant impact, reducing contact angles at nearly all conditions tested. Preequilibration of aqueous and oleic phases appeared to ...
Date: May 1, 2004
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.
Date: November 1, 2004
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: In this report we focus on surface studies of the wetting effects of SBM components; three areas of research are covered. First we present results of tests of interfacial properties of some commercial emulsifiers that are routinely used in both oil-based and synthetic oil-based drilling fluids. These products fall into two main groups, based on their CMC and IFT trends with changing pH. All can alter the wetting of mica, but measurements vary widely depending on the details of exposure and observation protocols. Non-equilibrium effects appear to be responsible for these variations, with equilibrated fluids generally giving lower contact angles than those observed with fluids that have not been pre-equilibrated. Addition of small amounts of emulsifier can increase the tendency of a crude oil to alter wetting of mica surfaces. The effects of similar amounts of these emulsifiers can be detected in interfacial tension measurements. Next, we report on the preliminary results of a study of polyethoxylated amines of varying structures on the wetting of mica surfaces. Contact angles have been measured for unequilibrated and pre-equilibrated fluids. Reduction in contact angles was generally observed when the surfaces were washed with toluene after exposure to surfactant solutions. Atomic forces microscopy is also being used to observe the interactions between these surfactants and mica surfaces. Finally, we show the results of a study of asphaltene stability in the presence of synthetic base oils. Most of the base oils in current use are paraffinic or olefinic--the aromatic content is minimized for environmental reasons--and they destabilize asphaltenes. Tests with two crude oils show onset conditions for base oils that are comparable to n-heptane and n-pentadecane in terms of the solubility conditions at the onset. Two ester-based products, Petrofree and Petrofree LV, did not cause asphaltene flocculation in these tests. A meeting of the research ...
Date: October 1, 2003
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: Exposure to crude oil in the presence of an initial brine saturation can render rocks mixed-wet. Subsequent exposure to components of synthetic oil-based drilling fluids can alter the wetting toward less water-wet or more oil-wet conditions. Mixing of the non-aromatic base oils used in synthetic oil-based muds (SBM) with an asphaltic crude oil can destabilize asphaltenes and make cores less water-wet. Wetting changes can also occur due to contact with the surfactants used in SBM formulations to emulsify water and make the rock cuttings oil-wet. Reservoir cores drilled with SBMs, therefore, show wetting properties much different from the reservoir wetting conditions, invalidating laboratory core analysis using SBM contaminated cores. Core cleaning is required in order to remove all the drilling mud contaminants. In theory, core wettability can then be restored to reservoir wetting conditions by exposure to brine and crude oil. The efficiency of core cleaning of SBM contaminated cores has been explored in this study. A new core cleaning procedure was developed aimed to remove the adsorbed asphaltenes and emulsifiers from the contaminated Berea sandstone cores. Sodium hydroxide was introduced into the cleaning process in order to create a strongly alkaline condition. The high pH environment in the pore spaces changed the electrical charges of both basic and acidic functional groups, reducing the attractive interactions between adsorbing materials and the rock surface. In cores, flow-through and extraction methods were investigated. The effectiveness of the cleaning procedure was assessed by spontaneous imbibition tests and Amott wettability measurements. Test results indicating that introduction of sodium hydroxide played a key role in removing adsorbed materials were confirmed by contact angle measurements on similarly treated mica surfaces. Cleaning of the contaminated cores reversed their wettability from oil-wet to strongly water-wet as demonstrated by spontaneous imbibition rates and Amott wettability indices.
Date: April 1, 2005
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: This report summarizes the experimental results of some baseline imbibition tests on recovery of mineral oil at very strongly water wet conditions (VSWW) from sandstones with air permeability ranging from 80 to 360 md. Mixed wettability cores were prepared by adsorption from either Minnelusa or Gullfaks crude oil using either synthetic Minnelusa reservoir brine or sea water. Recovery of two synthetic-based mud (SBM) base oils, Petrofree(reg sign)SF and LVT 200 from mixed wettability cores gave results that correlated closely with results for refined oils with viscosities ranging from 3.8 to 84 cp. Two synthetic-based mud emulsifiers (LE SUPERMUL and EZ MUL(reg sign)NT) were added to mineral oil and tested for their effect on the wettability of MXW-F core samples as indicated by spontaneous imbibition. In both cases a significant decrease in water wetness was obtained.
Date: May 1, 2003
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

Description: We report on a preliminary study of wetting effects of synthetic oil-based mud components on the wetting of mica surfaces using drilling mud fractions obtained from two wells drilled with synthetic oil-based muds (SBM). We have used these SBM fractions, one a filtrate and the other a centrifugate, to develop testing protocols for studies on smooth mica surfaces. Both SBM fractions changed the wetting of clean, dry mica surfaces, making them preferentially oil-wet. Solvents were tested to clean the mica with varying degrees of success. In tests designed to simulate contact between SBM fractions and reservoir pore surface, changes of wetting of mica that had previously been exposed to brine and crude oil were examined using six different crude oils in combination with several different brine formulations. Four of the six oils produced preferentially water-wet surfaces whereas two produced fairly oil-wet conditions on mica. Exposure to the SBM fractions tended to increase decane/water advancing contact angles on the more water-wet surfaces and to decrease those on the more oil-wet surfaces. Cleaning solvents were compared for their efficacy and the possibility of wettability restoration was examined for some of the cleaned surfaces.
Date: December 1, 2002
Creator: Buckley, Jill S. & Morrow, Norman R.
Partner: UNT Libraries Government Documents Department

WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

Description: The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this ...
Date: February 1, 2003
Creator: Buckley, Jill S.; Morrow, Norman R.; Palmer, Chris & Dasgupta, Purnendu K.
Partner: UNT Libraries Government Documents Department

Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: December 8, 2006
Creator: Morrow, Norman R.; Fischer, Herbert; Li, Yu; Mason, Geoffrey; Ruth, Douglas; Yin, Peigui et al.
Partner: UNT Libraries Government Documents Department

FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: October 1, 2004
Creator: Morrow, Norman R.; Fischer, Herbert; Li, Yu; Mason, Geoffrey; Ruth, Douglas; Seth, Siddhartha et al.
Partner: UNT Libraries Government Documents Department

FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: February 1, 2005
Creator: Morrow, Norman R.; Fischer, Herbert; Li, Yu; Mason, Geoffrey; Ruth, Douglas; Seth, Siddhartha et al.
Partner: UNT Libraries Government Documents Department

FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: April 1, 2005
Creator: Morrow, Norman R.; Fischer, Herbert; Li, Yu; Mason, Geoffrey; Ruth, Douglas; Seth, Siddhartha et al.
Partner: UNT Libraries Government Documents Department

Fundamentals of reservoir surface energy as related to surface properties, wettability, capillary action, and oil recovery from fractured reservoirs by spontaneous imbibition

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: February 1, 2006
Creator: Morrow, Norman R.; Fischer, Herbert; Li, Yu; Mason, Geoffrey; Ruth, Douglas; Seth, Siddhartha et al.
Partner: UNT Libraries Government Documents Department

Fundamentals of reservoir surface energy as related to surface properties, wettability, capillary action, and oil recovery from fractured reservoirs by spontaneous imbibition

Description: The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include ...
Date: June 8, 2006
Creator: Morrow, Norman R.; Fischer, Herbert; Li, Yu; Mason, Geoffrey; Ruth, Douglas; Seth, Siddhartha et al.
Partner: UNT Libraries Government Documents Department