18 Matching Results

Search Results

Advanced search parameters have been applied.

High Average Power, High Energy Short Pulse Fiber Laser System

Description: Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.
Date: November 13, 2007
Creator: Messerly, M J
Partner: UNT Libraries Government Documents Department

Fiber Laser Replacement for Short Pulse Ti:Sapphire Oscillators -- Scalable Mode Locking to Record Pulse Energies

Description: We have investigated fiber-based lasers that mode-lock via three nonlinear mechanisms: pulse evolution, bend loss, and tunneling. Experiments with nonlinear pulse evolution proved especially promising; we report here a fiber laser that produces 25 nJ, sub-200 fs pulses, an energy that is 60% higher than previous reports. Experiments with nonlinear bend loss were inconclusive; though bend-loss data show that the effect exits, we were not able to use the phenomenon to lock a laser. New models suggest that nonlinear tunneling could provide an alternate path.
Date: February 14, 2006
Creator: Dawson, J W; Messerly, M J & An, J
Partner: UNT Libraries Government Documents Department

A Drive Laser for Multi-Bunch Photoinjector Operation

Description: Numerous electron beam applications would benefit from increased average current without sacrificing beam brightness. Work is underway at LLNL to investigate the performance of X-band photoinjectors that would generate electron bunches at a rate matching the RF drive frequency, i.e. one bunch per RF cycle. A critical part of this effort involves development of photo-cathode drive laser technology. Here we present a new laser architecture that can generate pulse trains at repetition rates up to several GHz. This compact, fiber-based system is driven directly by the accelerator RF and so is inherently synchronized with the accelerating fields, and scales readily over a wide range of drive frequencies (L-band through X-band). The system will be required to produce 0.5 {mu}J, {approx}200 fs rise time, spatially and temporally shaped UV pulses designed to optimize the electron beam brightness. Presented is the current status of this system, producing 2 ps pulses from a continuous-wave source.
Date: May 11, 2012
Creator: Gibson, D J; Cormier, E; Messerly, M J; Prantil, M A & Barty, C J
Partner: UNT Libraries Government Documents Department

A grating-less, fiber-based oscillator that generates 25 nJ pulses

Description: We report a passively mode-locked fiber-based oscillator that has no internal dispersion-compensating gratings. This design, the first of its kind, produces 25 nJ pulses at 80 MHz with the pulses compressible to 150 fs. The pulses appear to be self-similar and initial data imply that their energy is further scalable.
Date: December 28, 2006
Creator: An, J; Kim, D; Dawson, J W; Messerly, M J & Barty, C J
Partner: UNT Libraries Government Documents Department

High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

Description: In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be ...
Date: June 15, 2006
Creator: Dawson, J W; Messerly, M J; An, J; Kim, D & Barty, C J
Partner: UNT Libraries Government Documents Department

Fiber laser front end for high energy petawatt laser systems

Description: We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main ...
Date: June 15, 2006
Creator: Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J et al.
Partner: UNT Libraries Government Documents Department


Description: A new class of tunable, monochromatic {gamma}-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photoscience and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. A prototype, capable of producing > 10{sup 8} 0.7 MeV photons in a single shot, with a fractional bandwidth of 1%, and a repetition rate of 10 Hz, is currently under construction at LLNL; this system will be used to perform nuclear resonance fluorescence experiments. A new symmetrized S-band rf gun, using a Mg photocathode, will produce up to 1 nC of charge in an 8 ps bunch, with a normalized emittance modeled at 0.8 mm.mrad; electrons are subsequently accelerated up to 120 MeV to interact with a 500 mJ, 10 ps, 355 nm laser pulse and generate {gamma}-rays. The laser front end is a fiber-based system, using corrugated-fiber Bragg gratings for stretching, and drives both the frequency-quadrupled photocathode illumination laser and the Nd:YAG interaction laser. Two new technologies are used in the laser: a hyper-Michelson temporal pulse stacker capable of producing 8 ps square UV pulses, and a hyper-dispersion compressor for the interaction laser. Other key technologies, basic scaling laws, and recent experimental results will also be presented, along with an overview of future research and development directions.
Date: August 15, 2007
Creator: Hartemann, F V; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Jovanovic, I et al.
Partner: UNT Libraries Government Documents Department

Optimal Design of a Tunable Thomson-Scattering Based Gamma-Ray Source

Description: Thomson-Scattering based systems offer a path to high-brightness high-energy (> 1 MeV) x-ray and {gamma}-ray sources due to their favorable scaling with electron energy. LLNL is currently engaged in an effort to optimize such a device, dubbed the ''Thomson-Radiated Extreme X-Ray'' (T-REX) source, targeting up to 680 keV photon energy. Such a system requires precise design of the interaction between a high-intensity laser pulse and a high-brightness electron beam. Presented here are the optimal design parameters for such an interaction, including factors such as the collision angle, focal spot size, optimal bunch charge, and laser energy. These parameters were chosen based on extensive modeling using PARMELA and in-house, well-benchmarked scattering simulation codes.
Date: June 7, 2007
Creator: Gibson, D J; Anderson, S G; Betts, S M; Hartemann, F V; Jovanovic, I; McNabb, D P et al.
Partner: UNT Libraries Government Documents Department

Power scaling analysis of fiber lasers and amplifiers based on non-silica materials

Description: A developed formalism for analyzing the power scaling of diffraction limited fiber lasers and amplifiers is applied to a wider range of materials. Limits considered include thermal rupture, thermal lensing, melting of the core, stimulated Raman scattering, stimulated Brillouin scattering, optical damage, bend induced limits on core diameter and limits to coupling of pump diode light into the fiber. For conventional fiber lasers based upon silica, the single aperture, diffraction limited power limit was found to be 36.6kW. This is a hard upper limit that results from an interaction of the stimulated Raman scattering with thermal lensing. This result is dependent only upon physical constants of the material and is independent of the core diameter or fiber length. Other materials will have different results both in terms of ultimate power out and which of the many limits is the determining factor in the results. Materials considered include silica doped with Tm and Er, YAG and YAG based ceramics and Yb doped phosphate glass. Pros and cons of the various materials and their current state of development will be assessed. In particular the impact of excess background loss on laser efficiency is discussed.
Date: March 30, 2010
Creator: Dawson, J W; Messerly, M J; Heebner, J E; Pax, P H; Sridharan, A K; Bullington, A L et al.
Partner: UNT Libraries Government Documents Department

Multi-watt 589nm fiber laser source

Description: We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.
Date: January 19, 2006
Creator: Dawson, J. W.; Drobshoff, A. D.; Beach, R. J.; Messerly, M. J.; Payne, S. A.; Brown A. et al.
Partner: UNT Libraries Government Documents Department

Design and Operation of a tunable MeV-level Compton-scattering-based (gamma-ray) source

Description: A mono-energetic gamma-ray (MEGa-ray) source based on Compton-scattering, targeting nuclear physics applications such as nuclear resonance fluorescence, has been constructed and commissioned at Lawrence Livermore National Laboratory. In this paper, the overall architecture of the system, as well as some of the critical design decisions made in the development of the source, are discussed. The performances of the two laser systems (one for electron production, one for scattering), the electron photoinjector, and the linear accelerator are also detailed, and initial {gamma}-ray results are presented.
Date: July 7, 2009
Creator: Gibson, D J; Albert, F; Anderson, S G; Betts, S M; Messerly, M J; Phan, H H et al.
Partner: UNT Libraries Government Documents Department

Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility

Description: We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that ...
Date: June 21, 2006
Creator: Crane, J. K.; Arnold, P.; Beach, R. J.; Betts, S.; Boley, C.; Chang, M. et al.
Partner: UNT Libraries Government Documents Department


Description: Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.
Date: May 18, 2010
Creator: Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M et al.
Partner: UNT Libraries Government Documents Department

Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

Description: Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).
Date: August 31, 2011
Creator: Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A et al.
Partner: UNT Libraries Government Documents Department