13 Matching Results

Search Results

Advanced search parameters have been applied.

Ion beam energy deposition physics for ICF targets

Description: The target interaction physics of light ion beams will be described. The phenomenon of range shortening with increasing material temperature will be corroborated, and the concomittant phenomenon of range relengthening due to ion-electron decoupling will be introduced.
Date: January 1, 1980
Creator: Mehlhorn, T.A.
Partner: UNT Libraries Government Documents Department

Light-ion transport in plasma channels for ICF

Description: Three aspects of fast ion beam transport in plasma channels are discussed. First, a MHD stability analysis of the 1-D cylindrical channel dynamical evolution is being developed. Second, calculations of charge exchange and collisional energy loss during ion beam propagation in plasma channels of interest are shown to give acceptable transport efficiencies. Third, an arrangement of plasma channels for spherical irradiation of a target is presented and results of efficient ion beam overlap calculations are reported.
Date: January 1, 1980
Creator: Wright, T. P.; Baker, L.; Freeman, J. R.; Green, T. A. & Mehlhorn, T. A.
Partner: UNT Libraries Government Documents Department

Progress in the pulsed power Inertial Confinement Fusion program

Description: Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that {approx}10 MJ of driver energy must be deposited within the ICF target in order to deposit {approx}1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm{sup 3}), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will ...
Date: December 1, 1996
Creator: Quintenz, J.P.; Matzen, M.K. & Mehlhorn, T.A.
Partner: UNT Libraries Government Documents Department

The role of anode and cathode plasmas in high power ion diode performance

Description: We describe measurements, modeling, and mitigation experiments on the effects of anode and cathode plasmas in applied-B ion diodes. We have performed experiments with electrode conditioning and cleaning techniques including RF discharges, anode heating, cryogenic cathode cooling and anode surface coatings that have been successful in mitigating some of the effects of electrode contamination on ion diode performance on both the SABRE and PBFA accelerators. We are developing sophisticated spectroscopic diagnostic techniques that allow us to measure the electric and magnetic fields in the A-K gap, we compare these measured fields with those predicted by our 3-D particle-in-cell (PIC) simulations of ion diodes, and we measure anode and cathode plasma densities and expansion velocities. We are continuing to develop E-M simulation codes with fluid-PIC hybrid models for dense plasmas, in order to understand the role of electrode plasmas in ion diode performance. Our strategy for improving high power ion diode performance is to employ and expand our capabilities in measuring and modeling A-K gap plasmas and leverage our increased knowledge into an increase in total ion beam brightness to High Yield Facility (HYF) levels.
Date: June 1, 1996
Creator: Mehlhorn, T.A.; Bailey, J.E. & Bernard, M.A.
Partner: UNT Libraries Government Documents Department

The prospect for fusion energy with light ions

Description: Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE.
Date: September 1, 1998
Creator: Mehlhorn, T.A.; Adams, R.G. & Bailey, J.E.
Partner: UNT Libraries Government Documents Department

Electron-Anode Interactions in Particle-in-Cell Simulations of Applied-B Ion Diodes

Description: Particle-in-cell simulations of applied-B ion diodes using the QUICKSILVER code have been augmented with Monte Carlo calculations of electron-anode interactions (reflection and energy deposition). Extraction diode simulations demonstrate a link between the instability evolution and increased electron loss and anode heating. Simulations of radial and extraction ion diodes show spatial non-uniformity in the predicted electron loss profile leading to hot spots on the anode that rapidly exceed the 350-450 {degree}C range, known to be sufficient for plasma formation on electron-bombarded surfaces. Thermal resorption calculations indicate complete resorption of contaminants with 15-20 kcal/mole binding energies in high-dose regions of the anode during the power pulse. Comparisons of parasitic ion emission simulations and experiment show agreement in some aspects; but also highlight the need for better ion source, plasma, and neutral gas models.
Date: November 12, 1998
Creator: Bailey, J.E.; Cuneo, M.D.; Johnson, D.J.; Mehlhorn, T.A.; Pointon, T.D.; Renk, T.J. et al.
Partner: UNT Libraries Government Documents Department

Ion divergence in magnetically insulated diodes

Description: Magnetically insulated ion diodes are being developed to drive inertial confinement fusion. Ion beam microdivergence must be reduced to achieve the very high beam intensities required to achieve this goal. Three-dimensional particle-in-cell simulations indicate that instability induced fluctuations can produce significant ion divergence during acceleration. These simulations exhibit a fast growing mode early in time, which has been identified as the diocotron instability. The divergence generated by this mode is modest due to the relatively high frequency (>1GHz). Later, a low-frequency low-phase-velocity instability develops. This instability couples effectively to the ions, since the frequency is approximately the reciprocal of the ion transit time, and can generate unacceptably large ion divergences (>30 mrad). Linear stability theory reveals that this mode requires perturbations parallel to the applied magnetic field and is related to the modified two stream instability. Measurements of ion density fluctuations and energy-momentum correlations have confirmed that instabilities develop in ion diodes and contribute to the ion divergence. In addition, spectroscopic measurements indicate that the ions have a significant transverse temperature very close to the emission surface. Passive lithium fluoride (LiF) anodes have larger transverse beam temperatures than laser irradiated active sources. Calculations of source divergence expected from the roughness of LiF surfaces and the possible removal of this layer is presented.
Date: December 1, 1995
Creator: Slutz, S.A.; Lemke, R.W.; Pointon, T.D.; Desjarlais, M.P.; Johnson, D.J.; Mehlhorn, T.A. et al.
Partner: UNT Libraries Government Documents Department

Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

Description: This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil ...
Date: July 21, 1999
Creator: Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V. et al.
Partner: UNT Libraries Government Documents Department

Factors Controlling In Situ Uranium and Technetium Bioreductionat the NABIR Field Research Center

Description: This research hypotheses is: (1) Indigenous microorganisms in the shallow aquifer at the FRC have the capability to reduce U(VI) and Tc(VII) but rates are limited by--Scarce electron donor, Low pH and potentially toxic metals, and High nitrate. (2) U(VI) and Tc(VII) reduction rates can be increased by--Successive donor additions, Raising pH to precipitate toxic metals, and Adding humics to complex toxic metals and serve as electron shuttles.
Date: March 17, 2004
Creator: Istok, J.; Jones, J.; Park, M.; Sapp, M.; Selko, E.; Laughman, R. et al.
Partner: UNT Libraries Government Documents Department

A light ion beam driver for the Laboratory Microfusion Facility

Description: The Laboratory Microfusion Facility (LMF) is being planned to develop high-grain, high-yield (200 MJ-1000 MJ) ICF targets for applications to nuclear weapons effects simulation, thermonuclear weapons physics, and energy production. It is expected that a 1000-MJ yield will require {approximately}10--20 MJ input energy to the target. The light-ion beam driver concept for the LMF consists of 36 accelerator modules that drive independent Li{sup +} ion diodes. Each ion beam is extracted from an annular ion diode and propagated to a solenoidal lens located near the wall of the target chamber. This magnetic lens focuses the beam on to the pellet located at the center of the target chamber. The temporal shape of the power pulse delivered to the target is controlled by the synchronized firing of the accelerator modules. This paper presents a status of the light-ion beam LMF driver concept.
Date: January 1, 1990
Creator: Ramirez, J.J.; Prestwich, K.R.; Stinnett, R.W.; Johnson, D.L.; Olson, C.L.; Allshouse, G.O. et al.
Partner: UNT Libraries Government Documents Department

Ion beam generation and focusing on PBFA (Particle Beam Fusion Accelerator) II

Description: During the past year we have succeeded in obtaining a 5 TW/cm{sup 2} proton focus on Sandia National Laboratories' Particle Beam Fusion Accelerator (PBFA) II. This has allowed us to shift our experimental emphasis to the implementation of an improved ion diode geometry for higher voltage operation, full azimuthal beam characterization, and especially lithium ion source experiments. We have made significant progress in each of these areas during the past year, demonstrating 10 MV diode operation, {plus minus}10% azimuthal beam symmetry, and promising initial results from lithium ion source experiments. 8 refs., 6 figs.
Date: January 1, 1990
Creator: Stinnett, R.W.; Bailey, J.E.; Bieg, K.W.; Coats, R.S.; Chandler, G.; Derzon, M.S. et al.
Partner: UNT Libraries Government Documents Department

Light ion sources and target results on PBFA II (Particle Beam Fusion Accelerator II)

Description: Advances in ion beam theory, diagnostics, and experiments in the past two years have enabled efficient generation of intense proton beams on PBFA II, and focusing of the beam power to 5.4 TW/cm{sup 2} on a 6-mm-diameter target. Target experiments have been started with the intense proton beams, since the range of protons at 4--5 MeV is equivalent to that of lithium at 30 MeV. Three series of experiments have been conducted using planar, conical, and cylindrical targets. These tests have provided information on ion beam power density, uniformity, and energy deposition. In order to increase the power density substantially for target implosion experiments, we are now concentrating on development of high voltage lithium ion beams. 10 refs., 13 figs.
Date: January 1, 1990
Creator: Cook, D.L.; Bailey, J.E.; Bieg, K.W.; Bloomquist, D.D.; Coats, R.S.; Chandler, G.C. et al.
Partner: UNT Libraries Government Documents Department

Z-Pinch Driven Inertial Confinement Fusion Target Physics Research at Sandia National Laboratories

Description: Three hohlraum concepts are being pursued at Sandia National Laboratories (SNL) to investigate the possibility of using pulsed power driven magnetic implosions (z-pinches) to drive high gain targets capable of yields in the range of 200-1000 MJ. This research is being conducted on SNL'S.Z facility that is capable of driving peak currents of 20 MA in z-pinch loads producing implosion velocities as high as 7.5X 107 cm/s, x-ray energies approaching 2 MJ, and x-ray powers exceeding 200 TW. This paper will discuss each of these hohlraum concepts and will overview the experiments that have been conducted on these systems to date.
Date: October 27, 1998
Creator: Alberts, T.E.; Asay, J.R.; Baca, P.M.; Baker, K.L.; Breeze, S.P.; Chandler, G.A. et al.
Partner: UNT Libraries Government Documents Department