4 Matching Results

Search Results

Advanced search parameters have been applied.

Effects of Impurities on Alumina-Niobium InterfacialMicrostructures

Description: Optical microscopy, scanning electron microscopy, and transmission electron microscopy were employed to examine the interfacial microstructural effects of impurities in alumina substrates used to fabricate alumina-niobium interfaces via liquid-film-assisted joining. Three types of alumina were used: undoped high-purity single-crystal sapphire; a high-purity, high-strength polycrystalline alumina; and a lower-purity, lower-strength polycrystalline alumina. Interfaces formed between niobium and both the sapphire and high-purity polycrystalline alumina were free of detectable levels of impurities. In the lower-purity alumina, niobium silicides were observed at the alumina-niobium interface and on alumina grain boundaries near the interface. These silicides formed in small-grained regions of the alumina and were found to grow from the interface into the alumina along grain boundaries. Smaller silicide precipitates found on grain boundaries are believed to form upon cooling from the bonding temperature.
Date: June 20, 2005
Creator: McKeown, Joseph T.; Sugar, Joshua D.; Gronsky, Ronald & Glaeser,Andreas M.
Partner: UNT Libraries Government Documents Department

Processing of alumina-niobium interfaces via liquid-film-assistedjoining

Description: Alumina-niobium interfaces were fabricated at 1400 C via solid-state diffusion brazing of a 127-{micro}m-thick niobium foil between alumina blocks. Prior to brazing, some of the alumina mating surfaces, both polished and unpolished, were evaporation-coated with copper films {approx}1.4 {micro}m, {approx}3.0 {micro}m, and {approx}5.5 {micro}m thick to induce liquid-film-assisted joining at the brazing temperature. The effects of copper film thickness and surface roughness on fracture characteristics and ceramic-metal interfacial microstructure were investigated by room-temperature four-point bend tests, optical microscopy, profilometry, and atomic force microscopy. The average strength of bonds between niobium and polished alumina substrates increased with the introduction of copper film interlayers, and the scatter in strength tended to decrease, with an optimum combination of strength and Weibull modulus arising for a copper film thickness of 3.0 {micro}m. The strength characteristics of niobium bonded to unpolished alumina substrates were also improved by liquid-film-assisted joining, but were unaffected by the thickness of the copper interlayers.
Date: February 15, 2005
Creator: McKeown, Joseph T.; Sugar, Joshua D.; Gronsky, Ronald & Glaeser,Andreas M.
Partner: UNT Libraries Government Documents Department

Liquid-film assisted formation of alumina/niobium interfaces

Description: Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significant beneficial effect on the average strength and the strength distribution. Experiments using sapphire substrates indicated that during bonding the initially continuous copper film evolved into isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. Film breakup appeared to initiate at either niobium grain boundary ridges, or at asperities or irregularities on the niobium surface that caused localized contact with the sapphire.
Date: June 16, 2002
Creator: Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A. & Glaeser, Andreas M.
Partner: UNT Libraries Government Documents Department

Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics

Description: Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.
Date: February 9, 2005
Creator: Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko & Glaeser, Andreas M.
Partner: UNT Libraries Government Documents Department