175 Matching Results

Search Results

Advanced search parameters have been applied.

Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

Description: Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.
Date: August 1, 2010
Creator: Holinga IV, G.H.
Partner: UNT Libraries Government Documents Department

Heinz Heinemann. The Berkeley Years (1978-1993)

Description: Heinz Heineman came to Berkeley in 1978 and stayed there for 15 years. This was the time of the energy crisis and we did not have anybody like him who had such a tremendous industrial experience with oil and coal conversion technology and science. He was interested in the conversion of coal to gaseous molecules and our studies with model catalysts appealed to him and attracted him. In a way, Heinz Heineman was bigger than life, since he played such a seminal role in the history of American catalysis science.
Date: August 27, 2009
Creator: Coble, Inger M.
Partner: UNT Libraries Government Documents Department

ELLIPSOMETRY OF ELECTROCHEMICAL SURFACE LAYERS

Description: Ellipsometry is concerned with the analysis and interpretation of changes in the state of polarization caused by reflection. The technique has found increasing interest in recent years for the measurement of thin films because it is unusually sensitive, disturbs the object minimally and can be applied to surfaces contained in any optically transparent medium. Film thicknesses amenable to measurement range from fractional monoatomic coverage to microscopic thicknesses. The measurement of changes in the state of polarization of light due to reflection provides an unusually sensitive tool for observing surface layers in any optically transparent environment. A fast, self-compensating ellipsometer has been used to observe the electrochemical formation of reacted surface layers. The optical effect of mass-transport boundary layers and component imperfections have been taken into account in the interpretation of results.
Date: June 1, 1977
Creator: Muller, R.H.
Partner: UNT Libraries Government Documents Department

Molecular Studies of Surfaces under Reaction Conditions; Sum Frequency Generation Vibrational Spectroscopy, Scanning Tunneling Microscopy and Ambient Pressure X-Ray Photoelectron Spectroscopy

Description: Instruments developed in our laboratory permit the atomic and molecular level study of NPs under reaction conditions (SFG, ambient pressure XPS and high pressure STM). These studies indicate continuous restructuring of the metal substrate and the adsorbate molecules, changes of oxidation states with NP size and surface composition variations of bimetallic NPs with changes of reactant molecules.
Date: November 11, 2009
Creator: Somorjai, G.A.
Partner: UNT Libraries Government Documents Department

Mask roughness induced LER: a rule of thumb -- paper

Description: Much work has already been done on how both the resist and line-edge roughness (LER) on the mask affect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and currently factor into LER limits. Here, we propose a 'rule-of-thumb' simplified solution that provides a fast and powerful method to obtain mask roughness induced LER. We present modeling data on an older generation mask with a roughness of 230 pm as well as the ultimate target roughness of 50 pm. Moreover, we consider feature sizes of 50 nm and 22 nm, and show that as a function of correlation length, the LER peaks at the condition that the correlation length is approximately equal to the resolution of the imaging optic.
Date: March 12, 2010
Creator: McClinton, Brittany & Naulleau, Patrick
Partner: UNT Libraries Government Documents Department

SQUID magnetometry from nanometer to centimeter length scales

Description: The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.
Date: June 28, 2010
Creator: Hatridge, Michael J.
Partner: UNT Libraries Government Documents Department

Wavelength-specific reflections: A decade of EUV actinic mask inspection research

Description: Mask inspection is essential for the success of any pattern-transfer lithography technology, and EUV Lithography in particular faces unique challenges. EUV masks resonant-reflective multilayer coatings have a narrow, wavelength-specific response that dramatically affects the way that defects appear, or disappear, at various illuminating wavelengths. Furthermore, the ever-shrinking size of 'critical' defects limits the potential effectiveness of DUV inspection techniques over time. Researchers pursuing numerous ways of finding and characterizing defects on EUV masks and have met with varying degrees of success. Their lessons inform the current, urgent exploration to select the most effective techniques for high-volume manufacturing. Ranging from basic research and demonstration experiments to commercial inspection tool prototypes, we survey the recent history of work in this area, including sixteen projects in Europe, Asia, and America. Solutions range from scanning beams to microscopy, dark field imaging to pattern transfer.
Date: December 31, 2010
Creator: Goldberg, Kenneth & Mochi, Iacopo
Partner: UNT Libraries Government Documents Department

OPTICAL DIFFERENCE FREQUENCY GENERATION OF FAR INFRARED RADIATION

Description: Three investigations of difference frequency generation (DFG) of far-infrared radiation by optical mixing are described: a theory of DFG by monochromatic, focused Gaussian pump laser beams, a theory of DFG by a picosecond pump laser pulse, and an experiment using ruby-pumped dye lasers. First, the theory of far-infrared generation by optical mixing of monochromatic, focused Gaussian beams in a uniaxial crystal is developed, taking into account the effects of diffraction, absorption, double refraction, and multiple reflections and total reflection at the boundary surfaces. (Reflection and transmission coefficients of a uniaxial crystal slab are derived by a new matrix technique.) Results of numerical calculations are presented. Focusing the pump beams appreciably enhances the far-infrared output despite the strong far-infrared diffraction. In a 1-cm long crystal, the optimum focal spot size is approximately equal to or smaller than the far-infrared wavelength for output frequencies less than 100 cm{sup -1}. Double refraction of the pump beams is relatively unimportant. Both far-infrared absorption and boundary reflections have major effects on the far-infrared output and its angular distribution. The former is often the factor which limits the output power. We show that a simple model treating the nonlinear polarization as a constant lie-radius Gaussian distribution of radiating dipoles adequately describes the effect of pump-beam focusing. We also compare the results of our calculations with those for second-harmonic generation. Second, a theoretical calculation of far-infrared power spectra generated by picosecond pulses in a nonlinear crystal is developed. The results are illustrated with two practical examples: LiNbO{sub 3} slabs oriented for rectification of the optical e-ray and for beating of the optical o-ray with the optical e-ray. The former is phase matched at 0 cm{sup -1}; the latter, at both the forward-(FCPM) and backward-collinear phase-matching frequencies. The one-dimensional, time-dependent electric field is discussed and then used to ...
Date: July 1, 1977
Creator: Morris, J.R.
Partner: UNT Libraries Government Documents Department

SUPERCONDUCTING TRANSITION EDGE BOLOMETER AND NOISE IN THIN FILMS

Description: We report the development of the composite superconducting transition edge bolometer. The temperature sensitive element is an aluminum strip evaporated onto the sapphire substrate. A bismuth film evaporated on the reverse side of the substrate is used to absorb the submillimeter radiation. The noise limitation of the bolometer is calculated. The fabrication and measured performance are described. The best electrical NEP (noise-equivalent-power) obtained is (1.7 {+-} 0.1) x 10{sup -15} WHz{sup -1/2} at 2 Hz at an operating temperature of 1.27 K. This NEP is within a factor of 2 of the thermal noise limit. The effective absorptivity of the bismuth film is measured to be 0.47 {+-} 0.05, and the corresponding detectivity D* is calculated to be (1.1 {+-} 0.1) x 10{sup 14} cm w{sup -1}Hz{sup 1/2}. Suggestions are made for further improvements in sensitivity. The current-dependent noise in thin metal films at the superconducting transition has been further investigated. The measured noise power spectrum of the tin film on sapphire substrate at the superconducting transition is compared with the cosine transforms of the decay curves obtained from step-function and {delta}-function thermal perturbations. The nature of the noise driving term is found to be a random current flowing inside the sample, in agreement with the uncorrelated thermal fluctuation model. This result is consistent with the case of a freely suspended tin fiber at the superconducting transition, but in contrast to the room temperature measurement where the cosine transform of the step-function response gives the noise power spectrum, in agreement with the correlated fluctuation model.
Date: June 1, 1978
Creator: Yeh, Nan-Hsiung
Partner: UNT Libraries Government Documents Department

Corner rounding in EUV photoresist: tuning through molecular weight, PAG size, and development time

Description: In this paper, the corner rounding bias of a commercially available extreme ultraviolet photoresist is monitored as molecular weight, photoacid generator (PAG) size, and development time are varied. These experiments show that PAG size influences corner biasing while molecular weight and development time do not. Large PAGs are shown to exhibit less corner biasing, and in some cases, lower corner rounding, than small PAGs. In addition, heavier resist polymers are shown to exhibit less corner rounding than lighter ones.
Date: December 31, 2009
Creator: Anderson, Christopher; Daggett, Joe & Naulleau, Patrick
Partner: UNT Libraries Government Documents Department

A STUDY OF PRECIPITATION IN INTERSTITIAL ALLOYS. I. PRECIPITATION SEQUENCE IN Ta-C ALLOYS

Description: A systematic transmission electron microscopy study of carbide precipitation in quenched-aged tantalum-carbon alloys has clarified the mechanism of precipitation in refractory BCC metal-carbon alloys. Diffraction contrast analysis shows that the precipitate platelets lie on {l_brace}310{r_brace} planes of the matrix, are interstitial in nature, and fully coherent before they thicken further and lose coherency. The precipitation sequence is continuous and involves no renucleation during the formation of the non-coherent phase. Thus, the final orientation relationship of the precipitate with the matrix already is found at the earliest stage at which it is possible to detect it. The interpretation of the results indicates that, as in FCC alloys, vacancies play an important role in the precipitation process during the nucleation and early growth stages and permit the formation of the hexagonal equilibrium M{sub 2}C structure early in the sequence. The model proposed to explain the observations is also consistent with the multistage hardening observed in quenched-aged refractory metal interstitial alloys.
Date: August 1, 1980
Creator: Dahmen, U.; Westmacott, K.H. & Thomas, G.
Partner: UNT Libraries Government Documents Department

Ultraviolet Absorption Spectrum of Nitrous Oxide as Function of Temperature and Isotopic Substitution

Description: The ultraviolet absorption spectra of nitrous oxide and its {sup 15}N isotopes over the wavelength range 197 to 172 nm and between 150 and 500 K show a weak continuous absorption and a pattern of diffuse banding that became pronounced at higher temperatures. The temperature dependence of the absorption spectrum results from the activation of the n{sub 2}{double_prime} bending mode. Deconvolution of the data shows that absorption by molecules in the (010) vibrational mode results in a spectrum of vibrational bands superimposed on a continuum. A weaker and nearly continuous spectrum results from the ultraviolet absorption by molecules in the (000) vibrational mode. Analysis of the structuring indicates n{sub 2}{double_prime} = (490 {+-} 10) cm{sup -1}. No rotational structure can be observed. Measurement of the n{sub 2}{double_prime} isotope shift is used to identify the quantum number of the upper state vibrational levels. Normal coordinate analysis of the excited state is used to determine a self-consistent set of molecular parameters: bond angle (115{sup o}), the values of n{sub 1}{prime} and n{sub 3}{prime} (1372 and 1761 cm{sup -1}, respectively), and the force constants of the upper state. It is suggested that the transitions observed are {sup 1}S{sup -}({sup 1}A{sup -}) {l_arrow} X- {sup 1}{sup +} and {sup 1}D {l_arrow} {tilde X} {sup 1}S{sup +}.
Date: July 1, 1980
Creator: Selwyn, G.S. & Johnston, H.S.
Partner: UNT Libraries Government Documents Department

Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

Description: Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.
Date: November 26, 2008
Creator: Kliewer, C.J. & Somorjai, G.A.
Partner: UNT Libraries Government Documents Department

Identification of the Charge Carriers in Cerium Phosphate Ceramics

Description: The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.
Date: June 2, 2010
Creator: Ray, Hannah L. & Jonghe, Lutgard C. De
Partner: UNT Libraries Government Documents Department

RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

Description: Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.
Date: July 1, 1980
Creator: Christman, E.A.; Appleby, A. & Jayko, M.
Partner: UNT Libraries Government Documents Department

Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

Description: The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by ...
Date: September 14, 2009
Creator: Somorjai, G.A.
Partner: UNT Libraries Government Documents Department

Random walk approach to spin dynamics in a two-dimensional electron gas with spin-orbit coupling

Description: We introduce and solve a semiclassical random walk (RW) model that describes the dynamics of spin polarization waves in zinc-blende semiconductor quantum wells. We derive the dispersion relations for these waves, including the Rashba, linear and cubic Dresselhaus spin-orbit interactions, as well as the effects of an electric field applied parallel to the spin polarization wave vector. In agreement with calculations based on quantum kinetic theory [P. Kleinert and V. V. Bryksin, Phys. Rev. B 76, 205326 (2007)], the RW approach predicts that spin waves acquire a phase velocity in the presence of the field that crosses zero at a nonzero wave vector, q{sub 0}. In addition, we show that the spin-wave decay rate is independent of field at q{sub 0} but increases as (q-q{sub 0}){sup 2} for q {ne} q{sub 0}. These predictions can be tested experimentally by suitable transient spin grating experiments.
Date: September 27, 2010
Creator: Yang, Luyi; Orenstein, J. & Lee, Dung-Hai
Partner: UNT Libraries Government Documents Department

Iterative procedure for in-situ EUV optical testing with an incoherent source

Description: We propose an iterative method for in-situ optical testing under partially coherent illumination that relies on the rapid computation of aerial images. In this method a known pattern is imaged with the test optic at several planes through focus. A model is created that iterates through possible aberration maps until the through-focus series of aerial images matches the experimental result. The computation time of calculating the through-focus series is significantly reduced by a-SOCS, an adapted form of the Sum Of Coherent Systems (SOCS) decomposition. In this method, the Hopkins formulation is described by an operator S which maps the space of pupil aberrations to the space of aerial images. This operator is well approximated by a truncated sum of its spectral components.
Date: December 1, 2009
Creator: Miyawaka, Ryan; Naulleau, Patrick & Zakhor, Avideh
Partner: UNT Libraries Government Documents Department

Watching Electrons Transfer from Metals to Insulators using Two Photon Photoemission

Description: Ultrafast angle-resolved two photon photoemission was used to study the dynamics and interfacial band structure of ultrathin films adsorbed onto Ag(111). Studies focused on the image potential state (IPS) in each system as a probe for measuring changes in electronic behavior in differing environments. The energetics and dynamics of the IPS at the toluene/Ag(111) interface are strongly dependent upon coverage. For a single monolayer, the first IPS is bound by 0.81 eV below the vacuum level and has a lifetime of 50 femtoseconds (fs). Further adsorption of toluene creates islands of toluene with an exposed wetting layer underneath. The IPS is then split into two peaks, one corresponding to the islands and one corresponding to the monolayer. The wetting layer IPS shows the same dynamics as the monolayer, while the lifetime of the islands increases exponentially with increasing thickness. Furthermore, the island IPS transitions from delocalized to localized within 500 fs, and electrons with larger parallel momenta decay much faster. Attempts were made using a stochastic model to extract the rates of localization and intraband cooling at differing momenta. In sexithiophene (6T) and dihexyl-sexithiophene (DH6T), the IPS was used as a probe to see if the nuclear motion of spectating side chains can interfere with molecular conduction. The energy and band mass of the IPS was measured for 6T and two geometries of DH6T on Ag(111). Electrons injected into the thicker coverages of DH6T grew exponentially heavier until they were completely localized by 230 fs, while those injected into 6T remained nearly free electron like. Based off of lifetime arguments and the density of defects, the most likely cause for the mass enhancement of the IPS in this system is small polaron formation caused by coupling of the electron to vibrations of the alkyl substituents. The energetic relaxation of the ...
Date: May 1, 2010
Creator: Johns, James E.
Partner: UNT Libraries Government Documents Department

Dual Selectivity Expressed in [2+2+1] Dynamic Clipping of Unsymmetrical [2]Catenanes

Description: A {pi}-templated dynamic [2+2+1] clipping protocol is established for the synthesis of [2]catenanes from two parts dialdehyde, two parts diamine and one part tetracationic cyclophane. It is further diversified for the selective formation of an unsymmetrical [2]catenane showing great translational selectivity by employing two different dialdehydes in a one-pot reaction. The dual selectivity and the dynamic nature are verified by {sup 1}H NMR spectroscopy, X-ray single crystal structural studies and exchange experiments.
Date: June 11, 2010
Creator: Liu, Yi
Partner: UNT Libraries Government Documents Department

Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity

Description: Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-path reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.
Date: February 13, 2008
Creator: Somorjai, Gabor A. & Park, Jeong Y.
Partner: UNT Libraries Government Documents Department

Development of ZnO:Ga as an Ultrafast Scintillator

Description: We report on several methods for synthesizing the ultra-fast scintillator ZnO(Ga), and measurements of the resulting products. This material has characteristics that make it an excellent alpha detector for tagging the time and direction of individual neutrons produced by t-d and d-d neutron generators (associated particle imaging). The intensity and decay time are strongly dependent on the method used for dopant incorporation. We compare samples made by diffusion of Ga metal to samples made by solid state reaction between ZnO and Ga2O3 followed by reduction in hydrogen. The latter is much more successful and has a pure, strong near-band-edge fluorescence and an ultra-fast decay time of the x-ray-excited luminescence. The luminescence increases dramatically as the temperature is reduced to 10K. We also present results of an alternate low-temperature synthesis that produces luminescent particles with a more uniform size distribution. We examine possible mechanisms for the bright near-band-edge scintillation and favor the explanation that it is due to the recombination of Ga3+ donor electrons with ionization holes trapped on H+ ion acceptors.
Date: December 10, 2008
Creator: Bourret-Courchesne, E.D.; Derenzo, S.E. & Weber, M.J.
Partner: UNT Libraries Government Documents Department

Room-temperature scintillation properties of cerium-doped REOX (RE=Y, La, Gd, and Lu; X=F, Cl, Br, and I)

Description: The scintillation properties of cerium-doped oxyhalides following the general formula REOX (RE=Y, La, Gd, and Lu; X=F, Cl, Br, and I) are reported. These materials were synthesized under dry conditions as microcrystalline powders from conventional solid state reactions. The room temperature X-ray excited emission and scintillation decay curves were measured and analyzed for each material. Additionally, the hygroscopic nature of the oxychlorides and oxybromides was compared to that of their corresponding rare earth halides. The yttrium, lanthanum, and gadolinium oxychlorides, and all of the oxybromides and oxyiodides are found to be activated by Ce{sup 3+}. GdOBr doped with 0.5% Ce{sup 3+} has the highest light output with a relative luminosity of about one-half that of LaBr{sub 3}: Ce{sup 3+}. It displays a single exponential decay of 30 ns.
Date: December 10, 2010
Creator: Eagleman, Yetta; Bourret-Courchesne, Edith & Derenzo, Stephen
Partner: UNT Libraries Government Documents Department

Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

Description: Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.
Date: June 16, 2011
Creator: Mao, Pan; Wang, Hung-Ta; Yang, Peidong & Wang, Daojing
Partner: UNT Libraries Government Documents Department