16 Matching Results

Search Results

Advanced search parameters have been applied.

Identification and Characterization of a Calcium/Phospholipid-Dependent Protein Kinase in P1798 Lymphosarcomas

Description: Calcium/phospholipid-dependent protein kinase (PKC) was partially purified from P1798 lymphosarcoma. Phospholipid-dependence was specific for phosphatidylserine. PKC phosphorylated Histone 1, with an apparent K_m of 14.1 μM. Chlorpromazine, a lipid-binding drug, inhibited PKC activity by 100%. Further studies were undertaken to establish analytical conditions which could be applied to the study of PKC in intact cells. The conditions included (1) determining optimum cell concentration for measuring PKC activity, (2) recovering PKC into the soluble fraction of cell extracts, (3) evaluating calcium and phospholipid requirements of PKC in this fraction, and (4) inhibiting PKC in this fraction. Final studies involved treatment of intact cells with potential activators. Both phytohaemagglutinin and a phorbol ester increased PKC activation.
Date: May 1984
Creator: Magnino, Peggy E. (Peggy Elizabeth)
Partner: UNT Libraries

Purification and Studies of Methylglyoxal Reductase from Sheep Liver

Description: The objectives of these investigations were (1) the purification of MG reductase from sheep liver and (2) studies of some of its characteristics. MG reductase was purified 40 fold and showed a single band on SDS-PAGE. Molecular weight estimations with SDS-PAGE showed a molecular weight of 44,000; although gel filtration with Sephadex G-150 gave a molecular weight of 87,000 indicating that the enzyme might be a dimer. The Km for MG is 1.42 mM and for NADH it is 0.04 mM. The pH optimum for the purified enzyme is pH 7.0. Isoelectric focusing experiments showed a pI of 9.3. In vivo experiments involving rats treated with 3,3',5-triiodothyronine (T_3) and 6-n-propyl-2-thiouracil (PTU) indicated that MG reductase was depressed by T_3 and elevated by PTU.
Date: May 1983
Creator: Lambert, Patricia A.
Partner: UNT Libraries

Neuroregulation and Myosin Light Chain Phosphorylation in Ascaris Suum Obliquely Striated Skeletal Muscle

Description: Extraction and quantitation of myosin light chain two coupled with myograph recordings from Ascaris muscle perfused with calmodulin inhibitors and neurotransmitters in conjunction with their respective agonists and antagonists have been used to establish the regulation of contraction in this muscle. Densitometric tracings of isolectric focusing gels separating the regulatory light chain were used to quantitate phosphorylation in resting, contracted and flaccid muscle. These studies indicated that inhibitory neurostimulation is mediated by a true GABA receptor. Myosin-mediated contraction is responsible for maintaining the level of tension observed in resting actin-mediated muscle. Actin-mediated contraction is responsible for the rapid rise in tension following excitatory stimuli. Both systems function simultaneously and are independant.
Date: August 1985
Creator: Martin, Rex E. (Rex Edward)
Partner: UNT Libraries

Regulation of an S6/H4 Kinase in Crude Lymphosarcoma P1798 Preparations

Description: Purified S6/H4 kinase (Mr 60,000) requires autophosphorylation for activation. A rabbit anti-S6/H4 kinase peptide (SVIDPVPAPVGDSHVDGAAK) antibody recognized both the S6/H4 kinase holoenzyme and catalytic domain. Immunoreactivity with p60 kinase protein, and S6/H4 kinase activity were precisely correlated in fractions obtained from ion exchange chromatography of P1798 lymphosarcoma extracts. An enzyme which catalyzed the MgATP-dependent phosphorylation and activation of S6/H4 kinase coeluted with immunoreactivity from Mono 5, but not Mono Q chromatography. Since S6/H4 kinase is homologous with rac-activated PAK65, the observation that phosphorylation is also required for activation suggests a complex mechanism for in vivo activation of the S6/H4 kinase.
Date: December 1998
Creator: Taylor, Allison Antoinette
Partner: UNT Libraries

Physical, Chemical and Catalytic Properties of the Isozymes of Bovine Glucose Phosphate Isomerase

Description: Glucose phosphate isomerase (GPI) occurs in different bovine tissues as multiple, catalytically active isozymes which can be resolved by polyacrylamide gel electrophoresis and isoelectric focusing. GPI from bovine heart was purified to homogeneity and each of the isozymes was resolved. Four of the five isozymes were characterized with regard to their physical, chemical and catalytic properties in order to establish their possible physiological significance and to ascertain their molecular basis. The isozymes exhibited identical native (118 Kd) and subunit (59 Kd) molecular weights but had different apparent pi values of 7.2, 7.0, 6.8 and 6.6. Structural analyses showed that the amino terminus was blocked and the carboxyl terminal sequence was -Glu-Ala-Ser-Gly for all four isozymes. The most basic isozyme was more stable than the more acidic isozymes (lower pi values) at pH extremes, at high ionic strength, in the presence of denaturants or upon exposure to proteases. Kinetic constants, such as turnover number, Km and Ki values, were identical for all isozymes. Identical amino acid composition and peptide mapping by chemical cleavage at methionine and cysteine residues of the isozymes suggest a postsynthetic modification rather then a genetic origin for the in vivo isozymes. When the most basic isozyme was incubated in vitro under mild alkaline conditions, there was a spontaneous generation of the more acidic isozymes with electrophoretic properties identical to those found in vivo. The simultaneous release in ammonia along with the spontaneous shift to more acidic isozymes and changes in the specific cleavage of the Asn-Gly bonds by hydroxylamine of the acidic isozyme indicates deamidation as the probable molecular basis. In summary the isozymes appear to be the result of spontaneous, postsynthetic modifications involving the addition of an equal number of negative charges and are consistent with the deamidation process.
Date: August 1987
Creator: Cini, John Kenneth
Partner: UNT Libraries

Studies on Lipoprotein Specificity of Human Plasma Lecithin Cholesterol Acyltransferase

Description: Huian plasma high-density lipoprotein (HDL) were isolated by a procedure employing polyanion precipitation and column chromatography. Lipid and protein composition of the HDL isolated by this method was found to be similar to another HDL preparation isolated by ultracentrifugation. However, minor differences were noted, including a higher phospholipid and apoproteinE content and lower triglyceride content of the HDL isolated by column chromatography. Four subfraction of HDL were obtained following chromatography on an anion exchange column. The subfraction four had the highest esterified to free cholesterol ratio, the second highest phospholipid to unesterified cholesterol, and the lowest molecular weight. In addition it was consistently coincided with lecithin: cholesterol acyltransferase (LCAT) activity and found to be the best substrate for the enzyme.
Date: May 1981
Creator: Jahani, Mehrnoosh
Partner: UNT Libraries

The Analysis of Fire Debris Using Nuclear Magnetic Resonance Spectroscopy

Description: This paper describes a new technique for analyzing fire debris using nuclear magnetic resonance (NMR) spectroscopy. Petroleum distillates, which are commonly used accelerants, were weathered, burned, and steamdistilled. These, as well as virgin samples of the accelerants, were analyzed by gas chromatography and nuclear magnetic resonance spectroscopy. In addition, solvent studies and detectibility limit studies were conducted. The use of NMR is described as a valuable adjunct to the existing methods of analysis.
Date: August 1981
Creator: Bryce, Kenneth L.
Partner: UNT Libraries

Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix

Description: In this experiment, fluorescent N- (1-pyrenyl) iodoacetamide modified the two reactive thiols, SH1 (Cys 707) and SH2 (Cys 697) on myosin to detect SH1-SH2 a -helix melting. The excimer forming property of pyrene is well suited to monitor the dynamics of the SH1 and SH2 helix melting, since the excimer should only form during the melted state. Decreased anisotropy of the excimer relative to the monomeric pyrene fluorescence is consistent with the disordering of the melted SH1-SH2 region in the atomic model. Furthermore, nucleotide analogs induced changes in the anisotropy of the excimer, suggesting that the nucleotide site modulates the flexibility of SH1-SH2 region.
Date: August 2000
Creator: Park, Hyunguk
Partner: UNT Libraries

Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer

Description: Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin were consistent with the actoS1 docking model. However, the neck region was much closer to the actin filament than predicted by static atomic models. The efficiency of energy transfer between Cys 374 and the regulatory light chain was much greater in the presence of ADP-AlF4, ADP-BeFx, and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached crossbridges which appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin. The resonance energy transfer data exclude a number ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Xu, Jin
Partner: UNT Libraries

Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase

Description: N-Acylphosphatidylethanoiamine (NAPE) is synthesized in the microsomes of cotton seedlings by a mechanism that is possibly unique to plants, the ATP-, Ca2+-, and CoA-independent acylation ofphosphatidylethanolamine (PE) with unesterified free fatty acids (FFAs), catalyzed by NAPE synthase. A photoreactive free fatty acid analogue, 12-[(4- azidosalicyl)amino]dodecanoic acid (ASD), and its 125I-labeled derivative acted as substrates for the NAPE synthase enzyme.
Date: December 1998
Creator: McAndrew, Rosemary S. (Rosemary Smith)
Partner: UNT Libraries

Studies of the Mechanism of the Catalytic Subunit of cAMP Dependent Protein Kinase

Description: The kinetic mechanism of the cAMP-dependent protein kinase has been determined to be random in the direction of MgADP phosphorylation by using initial velocity studies in the absence and presence of the product, phospho-Serpeptide (Leu-Arg-Arg-Ala-Ser[P]-Leu-Gly) , and dead-end inhibitors. In contrast to the kinetic parameters obtained in the direction of Serpeptide phosphorylation, the only kinetic parameters affected by Mg^2+ are the dissociation constants for E:phospho-Serpeptide and E:MgADP, which are decreased by about 4-fold. The dead-end analog MgAMPCP binds with an affinity equal to that of MgADP in contrast to MgAMPPCP, which binds weaker than MgATP. The ratio of the maximum velocities in the forward and reverse reactions is about 200, and the Haldane relationship gives a K-eq of (7.2 ± 2) x 10^2. The latter can be compared to the K-eq obtained by direct measurement of reactant concentrations (2.2 ± 0.4) x 10^3 and 31-P NMR (1 ± 0.5) x 10^3. Data for the pH dependence of kinetic parameters and inhibitor dissociation constants for the cAMP dependent protein kinase are consistent with a mechanism in which reactants selectively bind to an enzyme with the catalytic base unprotonated and an enzyme group required protonated for Ser-peptide binding. Preferentially MgATP binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/K-MgATP are pH independent. The V/K for Serpeptide is bell-shaped with estimated pK values of 6.2 and 8.5. The dependence of 1/K-i for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/K-Serpeptide, while the K-i for MgAMPPCP increases from a constant value of 650 μM above pH 8 to a constant value of 4 mM below pH 5.5. The K-i for uncomplexed Mg^2+ obtained from the Mg^2+ dependence of V and V/K-MgATP is apparently pH independent.
Date: August 1989
Creator: Yoon, Moon-Young
Partner: UNT Libraries

Mechanism of the Adenosine 3',5'-Monophosphate Dependent Protein Kinase

Description: Isotope partitioning experiments were carried out with the adenosine 3',5'-monophosphate-dependent protein kinase catalytic subunit (cAPK) from bovine hearts to obtain information on the order of addition of reactants and the relative rates of reactant release from enzyme compared to the catalytic step(s). A value of 100% trapping for both ErMgATP-[γ-32P] and E:3H-Serpeptide at low Mgf indicates that MgATP and Serpeptide dissociate slowly from the enzyme compared to the catalytic step(s). The K_Serpeptide for MgATP trapping is 17 μM, while the K_MgATP for Serpeptide trapping is 0.58 mM. The latter data indicate that the off-rate for MgATP from the E:MgATP complex is 14 s^-1 while that for Serpeptide from the E: Serpeptide complex is 64 s^-1. At high Mg^, 100% trapping is obtained for the E:MgATP-[γ-32P] complex but only 40% is obtained for the E:Serpeptide complex. Thus, the off-rate for Serpeptide from the E:MgATP:Serpeptide complex becomes significant at high Mg_f. Data suggest a random mechanism in which MgATP is sticky. The V for the cAPK reaction increases 1.5-1.7 fold in the presence of the R_II in the presence of saturating cAMP at a stoichiometry of R:C of 1:1. No change is obtained with the type-I complex under these conditions. At higher ratio of R:C (up to 100) no further change is observed with the type-II complex but inhibition by the type-I R_2(cAMP)_4 complex competitive vs. Serpeptide is observed. The activiation observed in the presence type-II R_2(cAMP)_4 effects neither the K_m for Serpeptide nor the K_m for MgATP. Both the activating affect of the type-II complex and the inhibitory effect of the type-I complex are dependent on the Mg_f with more type-II activation obtained the higher the Mg_f and more type-I complex required for inhibition the higher the Mg_f. The activation and inhibition are discussed in terms of the mechanism of the ...
Date: May 1988
Creator: Kong, Cheng-Te
Partner: UNT Libraries

Studies on Hog Plasma Lecithin:cholesterol Acyltransferase: Isolation and Characterization of the Enzyme

Description: Lecithin:cholesterol acyltransferase (LCAT) was isolated from hog plasma and basic physicochemical properties and functionally important regions were investigated. Approximately one milligram of the enzyme was purified to apparent homogeneity with approximately a 20,000-fold increase in specific activity. In the plasma, hog LCAT was found to associate with high-density lipoproteins (HDL) probably through hydrophobic interactions with apolipoprotein A-I. HDL was the preferred lipoprotein substrate of the enzyme as its macromolecular substrate. The enzyme was found to contain 4 free sulfhydryl groups; at least one of these appeared to be essential for catalytic activity. The enzyme had a tendency to aggregate at high concentrations. More than half of the tryptophan and none of the tyrosine residues of the enzyme were shown to be exposed to the aqueous environment based on fluorescence and absorbance studies, respectively.
Date: May 1987
Creator: Park, Yong Bok
Partner: UNT Libraries

Application of Synthetic Peptides as Substrates for Reversible Phosphorylation

Description: Two highly homologous synthetic peptides MLC(3-13) (K-R-A-K-A-K-T-TK-K-R-G) and MLC(5-13) (A-K-A-K-T-T-K-K-R-G) corresponding to the amino terminal amino acid sequence of smooth muscle myosin light chain were utilized as substrates for protein kinase C purified from murine lymphosarcoma tumors to determine the role of the primary amino acid sequence of protein kinase C substrates in defining the lipid (phosphatidyl serine and diacylglycerol) requirements for the activation of the enzyme. Removal of the basic residues lysine and arginine from the amino terminus of MLC(3-13) did not have a significant effect on the Ka value of diacylglycerol. The binding of effector to calcium-protein kinase C appears to be random since binding of one effector did not block the binding of the other.
Date: August 1992
Creator: Abukhalaf, Imad Kazem
Partner: UNT Libraries

Autophosphorylation and Autoactivation of an S6/H4 Kinase Isolated From Human Placenta

Description: A number of protein kinases have been shown to undergo autophosphorylation, but few have demonstrated a coordinate increase or decrease in enzymatic activity as a result. Described here is a novel S6 kinase isolated from human placenta which autoactivates through autophosphorylation in vitro. This S6/H4 kinase, purified in an inactive state, was shown to be a protein of Mr of 60,000 as estimated by SDS-PAGE and could catalyze the phosphorylation of the synthetic peptide S6-21, the histone H4, and myelin basic protein. Mild digestion of the inactive S6/H4 kinase with trypsin was necessary, but not sufficient, to activate the kinase fully
Date: May 1994
Creator: Dennis, Patrick B. (Patrick Brian)
Partner: UNT Libraries

Identification of Endogenous Substrates for ADP-Ribosylation in Rat Liver

Description: Bacterial toxins have been shown to modify animal cell proteins in vivo with ADPR. Animal cells also contain endogenous enzymes that can modify proteins. Indirect evidence for the existence in vivo of rat liver proteins modified by ADPR on arginine residues has been reported previously. Presented here is direct evidence for the existence of ADP-ribosylarginine in rat liver proteins. Proteins were subjected to exhaustive protease digestion and ADP-ribosyl amino acids were isolated by boronate chromatography.
Date: May 1992
Creator: Loflin, Paul T. (Paul Tracey)
Partner: UNT Libraries