7 Matching Results

Search Results

Advanced search parameters have been applied.

Atomic Inference from Weak Gravitational Lensing Data

Description: We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.
Date: December 14, 2005
Creator: Marshall, Phil
Partner: UNT Libraries Government Documents Department

Analytic Models of Plausible Gravitational Lens Potentials

Description: Gravitational lenses on galaxy scales are plausibly modeled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasizing that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential.We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modeled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.
Date: May 4, 2007
Creator: Baltz, Edward A.; Marshall, Phil & Oguri, Masamune
Partner: UNT Libraries Government Documents Department

Direct Observation of Cosmic Strings Via Their Strong Gravitational Lensing Effect. 1. Predictions for High Resolution Imaging Surveys

Description: We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.
Date: November 14, 2007
Creator: Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; /UC, Santa Barbara; Morganson, Eric; /KIPAC, Menlo Park et al.
Partner: UNT Libraries Government Documents Department

A Strong-Lens Survey in AEGIS: the Influence of Large Scale Structure

Description: We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin2 of HST/ACS imaging in the Extended Groth Strip (EGS). These deep F606W- and F814W-band observations are in the DEEP2-EGS field. In addition to a previously-known Einstein Cross also found by our search (the ''Cross'', HSTJ141735+52264, with z{sub lens} = 0.8106 and a published z{sub source} = 3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HSTJ141820+52361 (the ''Dewdrop''; z{sub lens} = 0.5798), lenses two distinct extended sources into two pairs of arcs (z{sub source} = 0.9818 by nebular [O{sub II}] emission), while the second, HSTJ141833+52435 (the ''Anchor''; z{sub lens} = 0.4625), produces a single pair of arcs (source redshift not yet known). Four less convincing arc/counter-arc and two-image lens candidates are also found and presented for completeness. All three definite lenses are fit reasonably well by simple singular isothermal ellipsoid models including external shear, giving {chi}{sub {nu}}{sup 2}values close to unity. Using the three-dimensional line-of-sight (LOS) information on galaxies from the DEEP2 data, we calculate the convergence and shear contributions {kappa}{sub los} and {gamma}{sub los} to each lens, assuming singular isothermal sphere halos truncated at 200 h{sup -1} kpc. These are compared against a robust measure of local environment, {delta}{sub 3}, a normalized density that uses the distance to the third nearest neighbor. We find that even strong lenses in demonstrably underdense local environments may be considerably affected by LOS contributions, which in turn, under the adopted assumptions, may be underestimates of the effect of large scale structure.
Date: July 14, 2006
Creator: Moustakas, Leonidas A.; Marshall, Phil J.; Newman, Jeffrey A.; Coil, Alison L.; Cooper, Michael C.; Davis, Marc et al.
Partner: UNT Libraries Government Documents Department

A Strong-Lens Survey in AEGIS: the influence of large scalestructure

Description: We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin{sup 2} of HST/ACS (F606W and F814W) imaging in the DEEP2-Extended Groth Strip (EGS). In addition to a previously-known Einstein Cross also found by our search (the 'Cross', HSTJ141735+52264, z{sub lens} = 0.8106, z{sub source} = 3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HSTJ141820+52361 (the 'Dewdrop'; z{sub lens} = 0.5798), lenses two distinct extended sources into two pairs of arcs (z{sub source} = 0.9818), while the second, HSTJ141833+52435 (the 'Anchor'; z{sub lens} = 0.4625), produces a single pair of arcs (z{sub lens} not yet known). Four less convincing arc/counter-arc and two-image lens candidates are also found and presented for completeness. Lenses are found in a both underdense and overdense local environments, as characterized by a robust measure, 1+{delta}{sub 3}, a normalized density that uses the distance to the third nearest neighbor. All three definite lenses are fit reasonably well by simple singular isothermal ellipsoid models including external shear, giving {chi}{sub {nu}}{sup 2} values close to unity. These shears are much greater than those implied by a simple consideration of the three-dimensional convergence and shear from galaxies along the line of sight, where each galaxy is approximated by a singular isothermal sphere halo truncated at 200 h{sup -1} kpc. This shows how a realistic treatment of galaxies and the large scale structure they are embedded in is necessary, and that simply characterizing the very-local environment may be insufficient.
Date: October 13, 2006
Creator: Moustakas, Leonidas A.; Marshall, Phil; Newman, Jeffrey A.; Coil,Alison L.; Cooper, Michael C.; Davis, Marc et al.
Partner: UNT Libraries Government Documents Department

Strong and Weak Lensing United III: Measuring the Mass Distribution of the Merging Galaxy Cluster 1E0657-56

Description: The galaxy cluster 1E0657-56 (z = 0.296) is remarkably well-suited for addressing outstanding issues in both galaxy evolution and fundamental physics. We present a reconstruction of the mass distribution from both strong and weak gravitational lensing data. Multi-color, high-resolution HST ACS images allow detection of many more arc candidates than were previously known, especially around the subcluster. Using the known redshift of one of the multiply imaged systems, we determine the remaining source redshifts using the predictive power of the strong lens model. Combining this information with shape measurements of ''weakly'' lensed sources, we derive a high-resolution, absolutely-calibrated mass map, using no assumptions regarding the physical properties of the underlying cluster potential. This map provides the best available quantification of the total mass of the central part of the cluster. We also confirm the result from Clowe et al. (2004, 2006a) that the total mass does not trace the baryonic mass.
Date: September 27, 2006
Creator: Bradac, Marusa; Clowe, Douglas; Gonzalez, Anthony H.; Marshall, Phil; Forman, William; Jones, Christine et al.
Partner: UNT Libraries Government Documents Department