14 Matching Results

Search Results

Advanced search parameters have been applied.

Radiation Safety Analysis for the Experimental Hutches at the Linac Coherent Light Source at SLAC

Description: The LCLS, the world's first x-ray free electron laser, will be constructed at the Stanford Linear Accelerator Center and is expected to be completed in 2009. A two-mirror system will be used in order to reduce background radiation in near and far experimental hutches. This paper describes the layout of the two-mirror system and also reports on the shielding requirements for the experimental hutches. Two beam loss scenarios for radiation sources are discussed: losses from the high energy electron beam hitting beam components and x-rays produced in the 130 m long undulator and scattered on x-ray mirrors. The FLUKA Monte-Carlo particle transport code was used for the shielding design and for the determination of the radiation levels around the experimental hutches.
Date: December 2, 2005
Creator: Mao, X.S.; Rokni, S.H.; Vincke, H. & /SLAC
Partner: UNT Libraries Government Documents Department

Radiological Studies for the LCLS Beam Abort System

Description: The Linac Coherent Light Source (LCLS), a pioneer hard x-ray free electron laser is currently under construction at the Stanford Linear Accelerator Center. It is expected that by 2009 LCLS will deliver laser pulses of unprecedented brightness and short length, which will be used in several forefront research applications. This ambitious project encompasses major design challenges to the radiation protection like the numerous sources and the number of surveyed objects. In order to sort those, the showers from various loss sources have been tracked along a detailed model covering 1/2 mile of LCLS accelerator by means of the Monte Carlo intra nuclear cascade codes FLUKA and MARS15. This article covers the FLUKA studies of heat load; prompt and residual dose and environmental impact for the LCLS beam abort system.
Date: March 25, 2008
Creator: Santana Leitner, M.; Vollaire, J. & Mao, X.S.
Partner: UNT Libraries Government Documents Department

Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

Description: Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.
Date: August 22, 2011
Creator: Mao, X.S.; Leitner, M.Santana & Vollaire, J.
Partner: UNT Libraries Government Documents Department

The LINAC Coherent Light Source and Radiological Issues During the Commissioning

Description: The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is the world's first X-ray free electron laser (XFEL). Pulses of x-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other x-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and lay-out. The general radiological issues during commissioning are presented, such as radiation dose rates and integrated doses outside the enclosure. Also, specific radiological issues related to X-ray free electron lasers are discussed. XFEL with high peak power will burn through high-Z materials. The X-ray beam needs to be blocked by stoppers when the downstream areas are occupied. LCLS stoppers feature a piece of boron carbide (B{sub 4}C), 10 mm thick. B{sub 4}C is one of the best materials since it has a low absorption coefficient for X-rays and a high melting temperature. Theoretical calculations indicate that the unfocused fluence of the LCLS XFEL beam should be about one order of magnitude below the damage threshold for bulk B{sub 4}C, for 830 eV FEL radiation. However, these calculations have not been tested experimentally and cannot be validated until LCLS begins providing 830 eV XFEL pulses. This paper describes the test plan for using the initial LCLS radiation to evaluate the survivability of B{sub 4}C and reports the preliminary results. Another major issue for LCLS is the potential radiation damage to the LCLS undulator magnets during operation. TLD dosimeters were installed along the LCLS undulators for each period of two or three weeks. This paper reports the integrated doses along the undulators with and without XFEL generation.
Date: August 26, 2010
Creator: Mao, X.S.; Leitner, M.Santana; Vollaire, J. & /SLAC
Partner: UNT Libraries Government Documents Department

Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

Description: The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons (< 2.5 MeV) are emitted isotropically and the fast neutrons are emitted anisotropically in the form of 1+Csin{sup 2}{theta}, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range.
Date: October 1, 1995
Creator: Liu, J.C.; Nelson, W.R.; Kase, K.R. & Mao, X.S.
Partner: UNT Libraries Government Documents Department

Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

Description: Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.
Date: May 6, 2006
Creator: Liu, C.Y.; Mao, X.L.; Greif, R. & Russo, R.E.
Partner: UNT Libraries Government Documents Department

The Linac Coherent Light Source at SLAC. Radiological Considerations and Shielding calculations

Description: The Linac Coherent Light Source (LCLS) at SLAC will be the world's first X-ray free electron laser when it becomes operational in 2009. Pulses of X-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other X-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and its lay-out. Results of the Monte Carlo calculations for the shielding design of the electron dump line, radiation damage to undulator, the residual radiation and the soil activation around the electron dump are presented.
Date: December 2, 2005
Creator: Mao, X.S.; Fasso, A.; Nakao, N.; Rokni, S.H.; Vincke, H. & /SLAC
Partner: UNT Libraries Government Documents Department

Glass particles produced by laser ablation for ICP-MSmeasurements

Description: Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.
Date: June 1, 2007
Creator: Gonzalez, J.; Liu, C.; Wen, S.; Mao, X. & Russo, R.E.
Partner: UNT Libraries Government Documents Department

Calculation of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials

Description: Monte Carlo calculations of the giant-dipole-resonance photoneutrons (GRN) around the Varian Clinac 2100C/2300C medical accelerator heads (10-20 MV modes) were made using the coupled EGS4-MORSE code. The actual head materials and geometries were simulated in great detail using the Combinatorial Geometry facility of MORSE. The neutron production (i.e., sites and yields) was calculated with EGS4 and, then, the neutron transport in the accelerator head was done with MORSE. Both the evaporation and direct neutron components of the GRN were considered by incorporating the EVAP4 code and an empirical algorithm, respectively, into MORSE. With the calculated neutron spectra around the head as source terms, MCNP4a was used to estimate the corresponding dose equivalent transmission (considering both the neutron attenuation and the build-up of captured gamma rays) in several different types of concrete. The calculated results of the absolute neutron fluence and spectra around the heads, as well as the transmission curves, are presented and discussed.
Date: November 13, 2006
Creator: Liu, J.C.; Kase, K.R.; Mao, X.S.; Nelson, W.R.; Kleck, J.H.; Johnson, S. et al.
Partner: UNT Libraries Government Documents Department

Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure

Description: The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.
Date: August 26, 2010
Creator: Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H. et al.
Partner: UNT Libraries Government Documents Department

Commissioning of the Electron Line of the Linac Coherent Light Source. Dose Rate Measurements and Simulations

Description: The Linac Coherent Light Source at the SLAC National Accelerator Laboratory (operated by Stanford University for the US Department of Energy) is the world's first hard X-ray Free Electron Laser machine. It uses high energy electrons delivered by a linac to create ultrafast and brilliant X-ray pulses that can be used as a 'high-speed' camera to obtain images of atoms and molecules. LCLS is a pioneer machine and, as such, its design has encountered unprecedented challenges, the solutions to which will benefit future facilities of its kind across the globe. This article describes the radiation protection aspects of LCLS electron beamlines. Special emphasis is put on the successful commissioning of the LCLS electron line, where, for all examined loss sources, the measured prompt and residual dose rates are in agreement with or below the values predicted through detailed Monte Carlo simulations, used earlier to design the shielding.
Date: May 20, 2009
Creator: Santana Leitner, M; Bauer, J.M.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A. et al.
Partner: UNT Libraries Government Documents Department

Nanosecond and femtosecond laser ablation of brass: Particulate and ICPMS measurements

Description: Femtosecond and nanosecond lasers were compared for ablating brass alloys. All operating parameters from both lasers were equal except for the pulse duration. The ablated aerosol vapor was collected on silicon substrates for particle size measurements or sent into an inductively coupled plasma mass spectrometer. The diameters and size distribution of particulates were measured from scanning electron microscope (SEM) images of the collected ablated aerosol. SEM measurements showed that particles ablated using nanosecond pulses were single spherical entities ranging in diameter from several micrometers to several hundred nanometers. Primary particles ablated using femtosecond ablation were {approx}100 nm in diameter but formed large agglomerates. ICPMS showed enhanced signal intensity and stability using femtosecond compared to nanosecond laser ablation.
Date: November 1, 2003
Creator: Liu, C.; Mao, X.L.; Mao, S.; Zeng, X.; Greif, R. & Russo, R.E.
Partner: UNT Libraries Government Documents Department