4 Matching Results

Search Results

Advanced search parameters have been applied.

Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining

Description: The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of ...
Date: June 23, 2006
Creator: Siders, C W; Jovanovic, I; Crane, J; Rushford, M; Lucianetti, A & Barty, C J
Partner: UNT Libraries Government Documents Department

Fiber laser front end for high energy petawatt laser systems

Description: We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main ...
Date: June 15, 2006
Creator: Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J et al.
Partner: UNT Libraries Government Documents Department

Development of diagnostics for high-energy petawatt pulses

Description: Applications accessed by high energy petawatt (HEPW) lasers require complete, single-shot characterization of pulse spatial, temporal, and energy characteristics. We describe techniques that enable single-shot characterization of the temporal shape and pulse contrast of HEPW pulses with >10{sup 8} dynamic range over a ns-temporal window. Approaches to measure pulse durations that span two orders of magnitude will be discussed. Finally, we describe a novel implementation of spectrally dispersed two-beam interferometry for measurement of the phase difference between two HEPW pulses. This technique can be applied to dispersion and B-integral measurements in a HEPW system, as well as to achieve precise timing of nanosecond pulses. Lastly, spectrally dispersed interferometry represents an ideal technique to enable coherent addition of HEPW pulses for production of ultrahigh intensities.
Date: June 15, 2006
Creator: Jovanovic, I; Hernandez, J; Appel, G; Barker, D; Betts, S; Brewer, W et al.
Partner: UNT Libraries Government Documents Department

Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility

Description: We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that ...
Date: June 21, 2006
Creator: Crane, J. K.; Arnold, P.; Beach, R. J.; Betts, S.; Boley, C.; Chang, M. et al.
Partner: UNT Libraries Government Documents Department