2 Matching Results

Search Results

Advanced search parameters have been applied.

Tunable Tensor Voting Improves Grouping of Membrane-Bound Macromolecules

Description: Membrane-bound macromolecules are responsible for structural support and mediation of cell-cell adhesion in tissues. Quantitative analysis of these macromolecules provides morphological indices for damage or loss of tissue, for example as a result of exogenous stimuli. From an optical point of view, a membrane signal may have nonuniform intensity around the cell boundary, be punctate or diffused, and may even be perceptual at certain locations along the boundary. In this paper, a method for the detection and grouping of punctate, diffuse curvilinear signals is proposed. Our work builds upon the tensor voting and the iterative voting frameworks to propose an efficient method to detect and refine perceptually interesting curvilinear structures in images. The novelty of our method lies on the idea of iteratively tuning the tensor voting fields, which allows the concentration of the votes only over areas of interest. We validate the utility of our system with synthetic and annotated real data. The effectiveness of the tunable tensor voting is demonstrated on complex phenotypic signals that are representative of membrane-bound macromolecular structures.
Date: April 15, 2009
Creator: Loss, Leandro A.; Bebis, George & Parvin, Bahram
Partner: UNT Libraries Government Documents Department

Prediction of epigenetically regulated genes in breast cancer cell lines

Description: Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed ...
Date: May 4, 2010
Creator: Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH et al.
Partner: UNT Libraries Government Documents Department