11 Matching Results

Search Results

Advanced search parameters have been applied.

APS Science 2006.

Description: In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied ...
Date: May 24, 2007
Creator: Gibson, J. M.; Fenner, R. B.; Long, G.; Borland, M. & Decker, G.
Partner: UNT Libraries Government Documents Department

The role of high-energy synchrotron radiation in biomedical trace element research

Description: This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation and maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.
Date: January 1, 1987
Creator: Pounds, J.G.; Long, G.J.; Kwiatek, W.M.; Jones, K.W.; Gordon, B.M. & Hanson, A.L.
Partner: UNT Libraries Government Documents Department

The application of a synchrotron radiation microprobe to trace element analysis

Description: Synchrotron radiation is light emitted by electrons when accelerated in a circular orbit. Properties of synchrotron radiation important to trace element analysis by x-ray fluorescence analysis include a broad, continuous and tunable energy spectrum for K- and L-shell excitation of all elements; a linearly polarized source reducing the scattered radiation backgrounds; low energy deposition in the target; and an appreciable flux in narrow energy bandwidths for chemical speciation. Experiments to date have generally used ''white'' continuous spectra with a low energy absorber and no focussing, but future runs will use focussing mirrors which increase intensities by a factor of more than 1000. Monochromators will be used to select the energy and bandwidths appropriate to the experiment. Detection limits for thin biomedical samples using a solid-state detector, a 0.5 mm beam and a 5 min counting interval were in the range of 30 ppB for calcium to 50 ppB for zinc. A prototype wet cell was designed, constructed and tested using cat cardiac myocytes with the result that major trace elements such as iron could be quantitated in single myocytes. The x-ray microprobe was used to localize gallium in fetal rat bone explants after being cultured in BGJ media containing 25 ..mu..M Ga(NO/sub 3/)/sub 3/. The high brightness of x rays from a synchrotron source makes possible the development of computerized tomography on a micrometer scale. A tomogram of a freeze-dried caterpillar head was produced in a 50 min scan. The pixel size was 30 ..mu..m using a 20-..mu..m beam. 2 refs., 1 fig.
Date: January 1, 1987
Creator: Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G. et al.
Partner: UNT Libraries Government Documents Department

An x-ray microprobe beam line for trace element analysis

Description: The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.
Date: January 1, 1987
Creator: Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G. et al.
Partner: UNT Libraries Government Documents Department

Autonomous system for pathogen detection and identification

Description: This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world´┐Ż s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air.
Date: September 24, 1998
Creator: Belgrader, P; Benett, W; Langlois, R; Long, G; Mariella, R; Milanovich, F et al.
Partner: UNT Libraries Government Documents Department

Trace element measurements using white synchrotron radiation

Description: Synchrotron radiation, when used for x-ray fluorescence (XRF) has several advantages over conventional x-ray sources. Our group at Brookhaven National Laboratory is developing the equipment and expertise to make XRF measurements with synchrotron radiation. The apparatus is briefly described, along with the alignment techniques. Some minimum detectable limits for trace elements in thin biological standards measured with white light irradiations are presented.
Date: November 10, 1986
Creator: Hanson, A.L.; Jones, K.W.; Gordon, B.M.; Pounds, J.G.; Kwiatek, W.M.; Long, G.J. et al.
Partner: UNT Libraries Government Documents Department

Trace element distribution in the rat cerebellum

Description: Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with x-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and non-destructive irradiation. Trace elements were measured in thin rat brain sections of 20-micrometers thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppM wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semi-quantitative mapping of the TE distribution in a section were used.
Date: October 1, 1989
Creator: Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Reuhl, K.R.; Hanson, A.L. & Jones, K.W.
Partner: UNT Libraries Government Documents Department

Science and Technology of Future Light Sources

Description: Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the ...
Date: December 1, 2008
Creator: Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J. et al.
Partner: UNT Libraries Government Documents Department