120 Matching Results

Search Results

Advanced search parameters have been applied.

General ignition requirements in TMR's with drift pumping

Description: Drift pumping of collisionally trapped DT ions and thermal alpha ash in the transitions and thermal barriers of TMR plugs can be shown by simple models to dominate the central cell energy losses, requiring in fact more radial ion loss by drift pumping than axial ion loss through the potential plugs, and setting a minimum central cell length for ignition. Induced electron transport due to drift pumping is shown to be small, so grids are not needed on the direct converter to separate ion and electron currents.
Date: January 1, 1983
Creator: Logan, B.G.
Partner: UNT Libraries Government Documents Department

Summary of the MARS tandem-mirror reactor design

Description: A recently completed two-year study of a commercial tandem-mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped-particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24 T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted. General characteristics of the MARS tandem mirror and STARFIRE tokamak reactor design are compared. A design of an upgrade of MFTF-B incorporating many of the MARS features is discussed.
Date: September 1, 1983
Creator: Logan, B.G.
Partner: UNT Libraries Government Documents Department

Relevance of the U.S. National Ignition Facility for driver and target options to next-step inertial fusion test facilities

Description: Achievement of inertial fusion ignition and energy gain in the proposed U.S. National Ignition Facility is a prerequisite for decisions to build next-step U.S. inertial fusion facilities for either high yield or high pulse-rate. There are a variety of target and driver options for such next-step inertial fusion test facilities, and this paper discusses possible ways that the NIF, using a 1.8 MJ glass laser in both direct and indirect-drive configurations, can provide target physics data relevant to several next-step facility options. Next step facility options include the Engineering Test Facility (ETF), which needs several-Hz pulse-rates for testing relevant to Inertial Fusion Energy (IFE) development. An option for high yield, called the Laboratory Microfusion Facility (LMF), does not require such high pulse-rates, but may still benefit from driver technologies capable of much higher shot rates than possible with glass lasers. A high-pulse-rate driver could also be used for a combined ETF/LMF facility, driving multiple target chambers with a common driver. Driver technologies that could support high-pulse rates for next-step options include heavy-ion and light-ion accelerators, diode-pumped solid-state lasers (DPSSL), and krypton-flouride gas lasers. The NIF could be used to provide important data for IFE in generic areas of target chamber damage and materials responses, neutron activation and heating, tritium recovery and safety, and in performance tests of prototypical IFE targets and injection systems. In the study of ignition in both direct and indirect-drive, the NIF would explore generic ICF fuel capsule implosion physics common to all driver and target options for next-step facilities. In the following, we point out specific ways in which the NIF could be used to study target physics specifically relevant to the above-mentioned driver options for such next-step facilities, as well as how the NIF laser system itself could be relevant to the DPSSL option.
Date: April 10, 1995
Creator: Logan, B.G.
Partner: UNT Libraries Government Documents Department

The role of the NIF in the development of inertial fusion energy

Description: Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.
Date: March 16, 1995
Creator: Logan, B.G.
Partner: UNT Libraries Government Documents Department

Evolution of the tandem mirror reactor concept

Description: We discuss the evolution of the tandem mirror reactor concept from the original conceptual reactor design (1977) through the first application of the thermal barrier concept to a reactor design (1979) to the beginning of the Mirror Advanced Reactor Study (1982).
Date: March 9, 1982
Creator: Carlson, G.A. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Compact Fusion Advanced Rankine (CFARII) power cycle---Operating regimes

Description: Performance (cost/kWe and efficiency) of generic Compact Fusion Advanced Rankine (CFARII) power conversion is investigated for various working fluids, operating temperatures and pressures, and thermal power levels. A general conclusion is that good CFARII performance is found for a remarkably broad range of materials, temperatures, pressures and power levels, which gives considerable flexibility to future design studies which may apply CFARII energy conversion to specific fusion energy sources such as ICF, MICF, and Mini-PACER. 5 refs, 7 figs., 2 tabs.
Date: September 30, 1991
Creator: Logan, B.G.
Partner: UNT Libraries Government Documents Department

Drift-pump coil design for a tandem mirror reactor

Description: This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge-exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yin-yang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region.
Date: December 1, 1983
Creator: Logan, B.G. & Neef, W.S.
Partner: UNT Libraries Government Documents Department

Fueling of tandem mirror reactors

Description: This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.
Date: January 1, 1985
Creator: Gorker, G.E. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Overview of the TIBER II (Tokamak Ignition/Burn Experimental Reactor) design

Description: The TIBER II Tokamak Ignition/Burn Experimental Reactor design is the result of efforts by numerous people and institutions, including many fusion laboratories, universities, and industries. While subsystems will be covered extensively in other reports, this overview will attempt to place the work in perspective. Major features of the design are compact size, low cost, and steady-state operation. These are achieved through plasma shaping and innovative features such as radiation tolerant magnets and optimized shielding. While TIBER II can operate in a pulsed mode, steady-state is preferred for nuclear testing. Current drive is achieved by a combination of lower hybrid and neutral beams. In addition, 10 MW of ECR is added for disruption control and current drive profiling. The TIBER II design has been the US option in preparation for the International Thermonuclear Experimental Reactor (ITER). Other equivalent national designs are the NET in Europe, the FER in Japan and the OTR in the USSR. These designs will help set the basis for the new international design effort. 9 refs.
Date: October 16, 1987
Creator: Henning, C.D. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Advances in Tandem Mirror fusion power reactors

Description: The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.
Date: May 20, 1986
Creator: Perkins, L.J. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Exploring a unique vision for heavy ion fusion

Description: A quest for more efficient beam-to-fuel energy coupling via polar direct drive (30% overall), to enable: (1) Self-T-breeding, self-neutron-energy-absorbing, large {pi}r, T-Lean targets {at} < 4 MJ driver energies; (2) Efficient fusion energy coupling into plasma for direct MHD conversion with moderate yields < 1 GJ; (3) Balance-of-plant costs 10X lower than steam cycle (e.g., < 80 $/kWe instead of 800 $/kWe); (4) CoE low enough (<3 cts/kWehr) for affordable water and H{sub 2} fuel for 10 B people on a hot planet; and (5) Enough fissile fuel production for 38 LWR's per GW{sub fusion} if uranium gets too expensive meantime.
Date: August 6, 2007
Creator: LOGAN, B.G. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Beam charge and current neutralization of high-charge-state heavy ions

Description: High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.
Date: October 29, 1997
Creator: Logan, B.G. & Callahan, D.A.
Partner: UNT Libraries Government Documents Department

Tandem mirror reactors with thermal barriers

Description: Preliminary calculations of Q and magnet designs are presented for three different versions of tandem mirror reactors (TMR) using thermal barriers to enhance plug potentials by auxiliary electron heating. These three versions, called A-cell-barrier TMR, axisymmetric-barrier TMR, and inside-barrier TMR, exhibit reduced plug density (n/sub p/ << 10/sup 19/ m/sup -3/) and less required magnetic mirror field (B/sub mirror approx. = 9 T) compared to TMR designs without thermal barriers. A-cell barrier TMR Q's range from 5 to 25 depending on the central-cell length (L/sub c/ = 100 to 200 m) and peak center-cell beta ..beta../sub c/ (0.3 to 0.7) allowed by MHD stability. Axisymmetric-barrier TMR Q's range from 14 at L/sub c/ = 100 m to 30 at L/sub c/ = 200 m, if peak ..beta../sub c/ = 1. From a global equilibrium model for the inside-barrier TMR, Q values greater than 15 are achieved for ..nu.. = 0.5 in the modified Boltzmann relation for the plug potential. Even higher Q's are obtained using ECRF heating in the barrier to create a hot, mirror-trapped electron population. TMR's burning D-D as a fuel have been analyzed with a modified version of the global equilibrium model and under the assumption of an axisymmetric plug and barrier stabilized by surface magnetic fields. High-barrier mirror ratio is now feasible (R/sub b/ = 30-50), and short barrier length permits Q/sub DD/ values greater than 5.
Date: May 23, 1980
Creator: Logan, B.G.; Arfin, B. & Barr, W.L.
Partner: UNT Libraries Government Documents Department

In-situ MHD energy conversion for fusion. [R]

Description: An advanced concept, in-situ MHD conversion, is described for converting fusion energy to electricity. Considerable cost savings can be realized because of the conversion of thermal energy to electricity achieved in the blanket by means of magnetohydrodynamic (MHD) generators. The external disk generator, also described, is another application of the MHD idea, which may have certain advantages over the in-situ scheme for advanced-fuel tokamaks. The feature that makes these schemes fusion-specific is the novel use of the electro-magnetic radiation naturally emitted by the plasma. The synchrotron radiation can be used either to heat the nonequilibrium MHD plasma, or possibly improve its stability. A Rankine cycle with cesium-seeded mercury as a working fluid is used in either case. Performance predictions by a quasi-one-dimensional model are presented. An experiment to determine the effect of microwave radiation on channel performance is planned.
Date: June 1, 1986
Creator: Campbell, R.B.; Logan, B.G. & Hoffman, M.A.
Partner: UNT Libraries Government Documents Department

Microwave superheaters for fusion

Description: The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ..delta..T of 2000/sup 0/K is possible when the wall temperature is maintained at 1000/sup 0/K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D-/sup 3/He. 5 refs.
Date: October 16, 1987
Creator: Campbell, R.B.; Hoffman, M.A. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

Description: Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q.
Date: November 6, 1979
Creator: Boghosian, B.M.; Lappa, D.A. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Mirror Advanced Reactor Study (MARS): executive summary and overview

Description: Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.
Date: July 1, 1984
Creator: Logan, B.G.; Perkins, L.J. & Gordon, J.D.
Partner: UNT Libraries Government Documents Department

TMX-axisymmetric magnet-set-design study

Description: Studies are currently being made to design an axisymmetric modification to the TMX-Upgrade experiment. The existing TMX-Upgrade quadrupole plug and transition magnet sets are replaced by the circular coils of an axisymmetric plug. The existing TMX-Upgrade magnet set is shown. The circular coils are sectioned to show the quadrupole magnets and the flux bundle. The two end cells of this magnet set are MHD stable minimum-B plugs. From a mechanical design viewpoint, an axisymmetric design is attractively simple. One of the axisymmetric designs under consideration is the Modified Cusp. A magnet set for this designs is shown. The coils are sectioned to show their cross-section.
Date: October 26, 1981
Creator: Wong, R.L.; Chargin, A.K. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion

Description: A key issue in heavy-ion beam inertial confinement fusion is target interaction, especially implosion symmetry. In this paper the 2D beam irradiation nonuniformity on the surface of a spherical target is studied. This is a first step to studies of 3D dynamical effects on target implosion. So far non-rotated beams have been studied. Because normal incidence may increase Rayleigh-Taylor instabilities, it has been suggested to rotate beams (to increase average uniformity) and hit the target tangentially. The level of beam irradiation uniformity, beam spill and normal incidence is calculated in this paper. In Mathematica the rotated beams are modeled as an annular integrated Gaussian beam. To simplify the chamber geometry, the illumination scheme is not a 4{pi} system, but the beams are arranged on few polar rings around the target. The position of the beam spot rings is efficiently optimized using the analytical model. The number of rings and beams, rotation radii and widths are studied to optimize uniformity and spilled intensity. The results demonstrate that for a 60-beam system on four rings Peak-To-Valley nonuniformities of under 0.5% are possible.
Date: January 2, 2009
Creator: Runge, J. & Logan, B.G.
Partner: UNT Libraries Government Documents Department

Overview of US heavy-ion fusion progress and plans

Description: Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.
Date: June 1, 2004
Creator: Logan, B.G.
Partner: UNT Libraries Government Documents Department

Inertial fusion energy development approaches for direct and indirect-drive

Description: Consideration of different driver and target requirements for inertial fusion energy (IFE) power plants together with the potential energy gains of direct and indirect-drive targets leads to different optimal combinations of driver and target options for each type of target. In addition, different fusion chamber concepts are likely to be most compatible with these different driver and target combinations. For example, heavy-ion drivers appear to be well matched to indirect=drive targets with all-liquid-protected-wall chambers requiring two-sided illuminations, while diode-pumped, solid- state laser drivers are better matched to direct-drive targets with chambers using solid walls or flow-guiding structures to allow spherically symmetric illuminations. R&D on the critical issues of drivers, targets, and chambers for both direct and indirect-drive options should be pursued until the ultimate gain of either type of target for IFE is better understood.
Date: August 20, 1996
Creator: Logan, B.G.; Lindl, J.D. & Meier, W.R.
Partner: UNT Libraries Government Documents Department