21 Matching Results

Search Results

Advanced search parameters have been applied.

Dark Energy in the Dark Ages

Description: Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or"reasonable'" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of<~;;2percent of total energy density at z>> 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5percent of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently sigma 8, and the shape and evolution of the nonlinear mass power spectrum for z<2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z=0-1100.
Date: April 11, 2006
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Cosmology with X-ray Cluster Baryons

Description: X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.
Date: April 10, 2007
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Biased Cosmology: Pivots, Parameters, and Figures of Merit

Description: In the quest for precision cosmology, one must ensure that the cosmology is accurate as well. We discuss figures of merit for determining from observations whether the dark energy is a cosmological constant or dynamical, with special attention to the best determined equation of state value, at the ``pivot'' or decorrelation redshift. We show this is not necessarily the best lever on testing consistency with the cosmological constant, and moreover is subject to bias. The standard parametrization of w(a)=w_0+w_a(1-a) by contrast is quite robust, as tested by extensions to higher order parametrizations and modified gravity. Combination of complementary probes gives strong immunization against inaccurate, but precise, cosmology.
Date: June 19, 2006
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Theory Challenges of the Accelerating Universe

Description: The accelerating expansion of the universe presents an exciting, fundamental challenge to the standard models of particle physics and cosmology. I highlight some of the outstanding challenges in both developing theoretical models and interpreting without bias the observational results from precision cosmology experiments in the next decade that will return data to help reveal the nature of the new physics. Examples given focus on distinguishing a new component of energy from a new law of gravity, and the effect of early dark energy on baryon acoustic oscillations.
Date: March 5, 2007
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

How many dark energy parameters?

Description: For exploring the physics behind the accelerating universe a crucial question is how much we can learn about the dynamics through next generation cosmological experiments. For example, in defining the dark energy behavior through an effective equation of state, how many parameters can we realistically expect to tightly constrain? Through both general and specific examples (including new parametrizations and principal component analysis) we argue that the answer is 42 - no, wait, two. Cosmological parameter analyses involving a measure of the equation of state value at some epoch (e.g., w_0) and a measure of the change in equation of state (e.g., w') are therefore realistic in projecting dark energy parameter constraints. More elaborate parametrizations could have some uses (e.g., testing for bias or comparison with model features), but do not lead to accurately measured dark energy parameters.
Date: May 16, 2005
Creator: Linder, Eric V. & Huterer, Dragan
Partner: UNT Libraries Government Documents Department

Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

Description: The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend the reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.
Date: January 31, 2007
Creator: Huterer, Dragan & Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Parameterized Beyond-Einstein Growth

Description: A single parameter, the gravitational growth index gamma, succeeds in characterizing the growth of density perturbations in the linear regime separately from the effects of the cosmic expansion. The parameter is restricted to a very narrow range for models of dark energy obeying the laws of general relativity but can take on distinctly different values in models of beyond-Einstein gravity. Motivated by the parameterized post-Newtonian (PPN) formalism for testing gravity, we analytically derive and extend the gravitational growth index, or Minimal Modified Gravity, approach to parameterizing beyond-Einstein cosmology. The analytic formalism demonstrates how to apply the growth index parameter to early dark energy, time-varying gravity, DGP braneworld gravity, and some scalar-tensor gravity.
Date: September 17, 2007
Creator: Linder, Eric; Linder, Eric V. & Cahn, Robert N.
Partner: UNT Libraries Government Documents Department

The Limits of Quintessence

Description: We present evidence that the simplest particle-physics scalar-field models of dynamical dark energy can be separated into distinct behaviors based on the acceleration or deceleration of the field as it evolves down its potential towards a zero minimum. We show that these models occupy narrow regions in the phase-plane of w and w', the dark energy equation-of-state and its time-derivative in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits how closely a scalar field can resemble a cosmological constant. These results, indicating a desired measurement resolution of order \sigma(w')\approx (1+w), define firm targets for observational tests of the physics of dark energy.
Date: May 24, 2005
Creator: Caldwell, R.R. & Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Exploring the expansion history of the universe

Description: Exploring the recent expansion history of the universe promises insights into the cosmological model, the nature of dark energy, and potentially clues to high energy physics theories and gravitation. They examine the extent to which precision distance-redshift observations can map out the history, including the acceleration-deceleration transition, and the components and equations of state of the energy density. They consider the ability to distinguish between various dynamical scalar field models for the dark energy, as well as higher dimension and alternate gravity theories. Finally, they present a new, advantageous parametrization for the study of dark energy.
Date: August 30, 2002
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

The Paths of Quintessence

Description: The structure of the dark energy equation of state phase plane holds important information on the nature of the physics. We explain the bounds of the freezing and thawing models of scalar field dark energy in terms of the tension between the steepness of the potential vs. the Hubble drag. Additionally, we extend the phase plane structure to modified gravity theories, examine trajectories of models with certain properties, and categorize regions in terms of scalar field hierarchical parameters, showing that dark energy is generically not a slow roll phenomenon.
Date: March 13, 2006
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Field Flows of Dark Energy

Description: Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.
Date: July 8, 2008
Creator: Cahn, Robert N.; de Putter, Roland & Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Snapping Supernovae at z>1.7

Description: We examine the utility of very high redshift Type Ia supernovae for cosmology and systematic uncertainty control. Next generation space surveys such as the Supernova/Acceleration Probe (SNAP) will obtain thousands of supernovae at z>1.7, beyond the design redshift for which the supernovae will be exquisitely characterized. We find that any z gtrsim 2 standard candles' use for cosmological parameter estimation is quite modest and subject to pitfalls; we examine gravitational lensing, redshift calibration, and contamination effects in some detail. The very high redshift supernovae - both thermonuclear and core collapse - will provide copious interesting information on star formation, environment, and evolution. However, the new observational systematics that must be faced, as well as the limited expansion of SN-parameter space afforded, does not point to high value for 1.7<z<3 SNe Ia in controlling evolutionary systematics relative to what SNAP can already achieve at z<1.7. Synergy with observations from JWST and thirty meter class telescopes afford rich opportunities for advances throughout astrophysics.
Date: July 3, 2006
Creator: Aldering, Greg; Kim, Alex G.; Kowalski, Marek; Linder, Eric V. & Perlmutter, Saul
Partner: UNT Libraries Government Documents Department

Observing dark energy with SNAP

Description: The nature of dark energy is of such fundamental importance -- yet such a mystery -- that a dedicated dark energy experiment should be as comprehensive and powerfully incisive as possible. The Supernova/Acceleration Probe robustly controls for a wide variety of systematic uncertainties, employing the Type Ia supernova distance method, with high signal to noise light curves and spectra over the full redshift range from z=0.1-1.7, and the weak gravitational lensing method with an accurate and stable point spread function.
Date: June 7, 2004
Creator: Linder, Eric V. & Collaboration, SNAP
Partner: UNT Libraries Government Documents Department

Strong gravitational lensing and dark energy complementarity

Description: In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w{sub 0} and time variation w{sub a}. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1 percent accuracy can improve equation of state characterization by 15-50 percent. Next generation surveys should provide data on roughly 105 lens systems, though systematic errors will remain challenging.
Date: January 21, 2004
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Probing gravitation, dark energy, and acceleration

Description: The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Date: February 20, 2004
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Light thoughts on dark energy

Description: The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Date: April 1, 2004
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Reconstructing and deconstructing dark energy

Description: The acceleration of the expansion of the universe, ascribed to a dark energy, is one of the most intriguing discoveries in science. In addition to precise, systematics controlled data, clear, robust interpretation of the observations is required to reveal the nature of dark energy. Even for the simplest question: is the data consistent with the cosmological constant? there are important subtleties in the reconstruction of the dark energy properties. We discuss the roles of analysis both in terms of the Hubble expansion rate or dark energy density {rho}DE(z) and in terms of the dark energy equation of state w(z), arguing that each has its carefully defined place. Fitting the density is best for learning about the density, but using it to probe the equation of state can lead to instability and bias.
Date: June 7, 2004
Creator: Linder, Eric V.
Partner: UNT Libraries Government Documents Department

Testing the cosmological constant as a candidate for dark energy

Description: It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.
Date: December 3, 2003
Creator: Kratochvil, Jan; Linde, Andrei; Linder, Eric V. & Shmakova, Marina
Partner: UNT Libraries Government Documents Department