3 Matching Results

Search Results

Advanced search parameters have been applied.

Exposing the non-collectivity in elliptic flow

Description: We show that backward-forward elliptic asymmetry correlations provide an experimentally accessible observable which distinguishes between collective and non-collective contributions to the observed elliptic asymmetry v2 in relativistic heavy ion collisions. The measurement of this observable will reveal the momentum scale at which collective expansion seizes and where the elliptic asymmetry is dominated by (semi)-hard processes. In addition, the knowledge of the actual magnitude of the collective component of the elliptic asymmetry will be essential for the extraction of the viscosity of the matter created in these collisions.
Date: February 13, 2009
Creator: Liao, Jinfeng & Koch, Volker
Partner: UNT Libraries Government Documents Department

Exact Relativistic Ideal Hydrodynamical Solutions in (1+3)D with Longitudinal and Transverse Flows

Description: A new method for solving relativistic ideal hydrodynamics in (1+3)D is developed. Longitudinal and transverse radial flows are explicitly embedded into the ansatz for velocity field and the hydrodynamic equations are reduced to a single equation for the transverse velocity field only, which is analytically more tractable as compared with the full hydrodynamic equations. As an application we use the method to find analytically all possible solutions whose transverse velocity fields have power dependence on proper time and transverse radius. Possible application to the Relativistic Heavy Ion Collisions and possible generalizations of the method are discussed.
Date: May 20, 2009
Creator: Liao, Jinfeng & Koch, Volker
Partner: UNT Libraries Government Documents Department

Angular Dependence of Jet Quenching Indicates Its Strong Enhancement Near the QCD Phase Transition

Description: We study dependence of jet quenching on matter density, using 'tomography' of the fireball provided by RHIC data on azimuthal anisotropy v{sub 2} of high p{sub t} hadron yield at different centralities. Slicing the fireball into shells with constant (entropy) density, we derive a 'layer-wise geometrical limit' v{sub 2}{sup max} which is indeed above the data v{sub 2} < v{sub x}{sup max}. Interestingly, the limit is reached only if quenching is dominated by shells with the entropy density exactly in the near-T{sub c} region. We show two models that simultaneously describe the high p{sub t} v{sub 2} and R{sub AA} data and conclude that such a description can be achieved only if the jet quenching is few times stronger in the near-T{sub c} region relative to QGP at T > T{sub c}. One possible reason for that may be recent indications that the near-T{sub c} region is a magnetic plasma of relatively light color-magnetic monopoles.
Date: October 22, 2008
Creator: Liao, Jinfeng & Shuryak, Edward
Partner: UNT Libraries Government Documents Department