21 Matching Results

Search Results

Advanced search parameters have been applied.

Multipacting Analysis for the Half-Wave Spoke Resonator Crab Cavity for LHC

Description: A compact 400-MHz half-wave spoke resonator (HWSR) superconducting crab cavity is being developed for the LHC upgrade. The cavity shape and the LOM/HOM couplers for such a design have been optimized to meet the space and beam dynamics requirements, and satisfactory RF parameters have been obtained. As it is known that multipacting is an issue of concern in a superconducting cavity which may limit the achievable gradient. Thus it is important in the cavity RF design to eliminate the potential MP conditions to save time and cost of cavity development. In this paper, we present the multipacting analysis for the HWSR crab cavity using the Track3P code developed at SLAC, and to discuss means to mitigate potential multipacting barriers. Track3P was used to analyze potential MP in the cavity and the LOM, HOM and FPC couplers. No resonances were found in the LOM couplers and the coaxial beam pipe. Resonant trajectories were identified on various locations in cavity, HOM and FPC couplers. Most of the resonances are not at the peak SEY of Nb. Run-away resonances were identified in broader areas on the cavity end plate and in the HOM coupler. The enhancement counter for run-away resonances does not show significant MP. HOM coupler geometry will be optimized to minimize the high SEY resonance.
Date: June 23, 2011
Creator: Ge, Lixin & Li, Zenghai
Partner: UNT Libraries Government Documents Department

On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams

Description: The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.
Date: June 23, 2011
Creator: Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris & /SLAC
Partner: UNT Libraries Government Documents Department

On Projecting Discretized Electromagnetic Fields with Unstructured Grids

Description: A new method for projecting discretized electromagnetic fields on one unstructured grid to another grid is presented in this paper. Two examples are used for studying the errors of different projection methods. The analysis shows that the new method is very effective on balancing both the error of the electric field and that of the magnetic field (or curl of the electric field).
Date: August 13, 2008
Creator: Lee, Lie-Quan; Candel, Arno; Kabel, Andrea; Li, Zenghai & /SLAC
Partner: UNT Libraries Government Documents Department

800MHz Crab Cavity Conceptual Design For the LHC Upgrade

Description: In this paper, we present an 800 MHz crab cavity conceptual design for the LHC upgrade. The cell shape is optimized for lower maximum peak surface fields as well as higher transverse R/Q. A compact coax-to-coax coupler scheme is proposed to damp the LOM/SOM modes. A two-stub antenna with a notch filter is used as the HOM coupler to damp the HOM modes in the horizontal plane and rejects the operating mode at 800MHz. Multipacting (MP) simulations show that there are strong MP particles at the disks. Adding grooves along the short axis without changing the operating mode's RF characteristics can suppress the MP activities. Possible input coupler configurations are discussed.
Date: May 26, 2009
Creator: Xiao, Liling; Li, Zenghai; Ng, Cho-Kuen; Seryi, Andrei & /SLAC
Partner: UNT Libraries Government Documents Department

Omega3P: A Parallel Finite-Element Eigenmode Analysis Code for Accelerator Cavities

Description: Omega3P is a parallel eigenmode calculation code for accelerator cavities in frequency domain analysis using finite-element methods. In this report, we will present detailed finite-element formulations and resulting eigenvalue problems for lossless cavities, cavities with lossy materials, cavities with imperfectly conducting surfaces, and cavities with waveguide coupling. We will discuss the parallel algorithms for solving those eigenvalue problems and demonstrate modeling of accelerator cavities through different examples.
Date: March 4, 2009
Creator: Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Ko, Kwok & /SLAC
Partner: UNT Libraries Government Documents Department

Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavitiy for the LHC Update

Description: Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R&D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.
Date: August 26, 2010
Creator: Li, Zenghai; Xiao, Liling; Ng, Cho; Markiewicz, Thomas & /SLAC
Partner: UNT Libraries Government Documents Department

Modeling large heterogeneous RF structures

Description: Large heterogeneous structures are difficult to model on a numerical grid because of the limitations on computing resources, so that alternate approaches such as equivalent circuits and mode-matching have been developed to treat this problem. This paper will describe the three methods and will analyze a structure representative of the SLAC and JLC detuned structures to compare the efficacy of each approach.
Date: November 1, 1996
Creator: Li, Zenghai; Ko, Kwok; Srinivas, V. & Higo, Toshiyasu
Partner: UNT Libraries Government Documents Department

Cavity BPM with Dipole-Mode-Selective Coupler

Description: In this paper, we present a novel position sensitive signal pickup scheme for a cavity BPM. The scheme utilizes the H-plane of the waveguide to couple magnetically to the side of the cavity, which results in a selective coupling to the dipole mode and a total rejection of the monopole mode. This scheme greatly simplifies the BPM geometry and relaxes machining tolerances. We will present detailed numerical studies on such a cavity BPM, analyze its resolution limit and tolerance requirements for a nanometer resolution. Finally present the measurement results of a X-band prototype.
Date: June 21, 2006
Creator: Li, Zenghai; Johnson, Ronald; Smith, Stephen R.; /SLAC; Naito, Takashi; /KEK, Tsukuba et al.
Partner: UNT Libraries Government Documents Department

X-Band Photoinjector Beam Dynamics

Description: SLAC is studying the feasibility of using an X-band RF photocathode gun to produce low emittance bunches for applications such as a mono-energetic MeV {gamma} ray source (in collaboration with LLNL) and a photoinjector for a compact FEL. Beam dynamics studies are being done for a configuration consisting of a 5.5-cell X-band gun followed by several 53-cell high-gradient X-band accelerator structures. A fully 3D program, ImpactT, is used to track particles taking into account space charge forces, short-range longitudinal and transverse wakefields, and the 3D rf fields in the structures, including the quadrupole component of the couplers. The effect of misalignments of the various elements, including the drive-laser, gun, solenoid and accelerator structures, are evaluated. This paper presents these results and estimates of the expected bunch emittance vs cathode gradient, and the effects of mixing between the fundamental and off-frequency longitudinal modes. An X-band gun at SLAC has been shown to operate reliably with a 200 MV/m acceleration gradient at the cathode, which is nearly twice the 115 MV/m acceleration gradient in the LCLS gun. The higher gradient should roughly balance the space charge related transverse emittance growth for the same bunch charge but provide a 3-4 times shorter bunch length. The shorter length would make the subsequent bunch compression easier and allow for a more effective use of emittance exchange. Such a gun can also be used with an X-band linac to produce a compact FEL or g ray source that would require rf sources of only one frequency for beam generation and acceleration. The feasibility of using an X-band rf photocathode gun and accelerator structures to generate high quality electron beams for compact FELs and g ray sources is being studied at SLAC. Results from the X-band photoinjector beam dynamics studies are reported in this paper.
Date: December 13, 2011
Creator: Zhou, Feng; /SLAC; Adolphsen, Chris; /SLAC; Ding, Yuantao; /SLAC et al.
Partner: UNT Libraries Government Documents Department

State of the art in electromagnetic modeling for the Compact Linear Collider

Description: SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefield damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.
Date: July 10, 2009
Creator: Candel, Arno; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Schussman, Greg et al.
Partner: UNT Libraries Government Documents Department

Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator

Description: We report on the design of a seven-cell, standing-wave, 1.3-GHz rf cavity and the associated beam dynamics studies for the upgrade of the drive beamline LINAC at the Argonne Wakefield Accelerator (AWA) facility. The LINAC design is a compromise between single-bunch operation (100 nC {at} 75 MeV) and minimization of the energy droop along the bunch train during bunch-train operation. The 1.3-GHz drive bunch-train target parameters are 75 MeV, 10-20-ns macropulse duration, and 16 x 60 nC microbunches; this is equivalent to a macropulse current and beam power of 80 A and 6 GW, respectively. Each LINAC structure accelerates approximately 1000 nC in 10 ns by a voltage of 11 MV at an rf power of 10 MW. Due to the short bunch-train duration desired ({approx}10 ns) and the existing frequency (1.3 GHz), compensation of the energy droop along the bunch train is difficult to accomplish by means of the two standard techniques: time-domain or frequency-domain beam loading compensation. Therefore, to minimize the energy droop, our design is based on a large stored energy rf cavity. In this paper, we present our rf cavity optimization method, detailed rf cavity design, and beam dynamics studies of the drive beamline.
Date: July 2, 2012
Creator: Power, John; /Argonne; Conde, Manoel; /Argonne; Gai, Wei; /Argonne et al.
Partner: UNT Libraries Government Documents Department

A Compact X-Band Linac for an X-Ray FEL

Description: With the growing demand for FEL light sources, cost issues are being reevaluated. To make the machines more compact, higher frequency room temperature linacs are being considered, specifically ones using C-band (5.7 GHz) rf technology, for which 40 MV/m gradients are achievable. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation and 70 MV/m for multibunch operation. The concern, of course, is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances. The successful lasing and operation of the LCLS [1] has generated world-wide interest in X-ray FELs. The demand for access to such a light source by researchers eager to harness the capabilities of this new tool far exceeds the numbers that can be accommodated, spurring plans for additional facilities. Along with cost, spatial considerations become increasingly important for a hard X-ray machine driven by a multi-GeV linac. The consequent need for high acceleration gradient focuses attention on higher frequency normal conducting accelerator technology, rather than the superconducting technology of a soft X-ray facility like FLASH. C-band technology, such as used by Spring-8, is a popular option, capable of providing 40 MV/m. However, more than a decade of R&D toward an X-band linear collider, centered at SLAC and KEK, has demonstrated that this frequency option can extend the gradient reach to the 70-100 MV/m range. The following design and beam dynamics calculations show an X-band linac to be an attractive choice on which to base an ...
Date: September 12, 2011
Creator: Adolphsen, Chris; Huang, Zhirong; Bane, Karl L.F.; Li, Zenghai; Zhou, Feng; Wang, Faya et al.
Partner: UNT Libraries Government Documents Department

The Development of the Linac Coherent Light Source RF Gun

Description: The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL) requiring extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new type of light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. Therefore a new RF gun or at least the modification of an existing gun was necessary. The parameters listed in Table 1 illustrate the unique characteristics of LCLS which drive the requirements for the electron gun as given in Table 2. The gun beam quality needs to accommodate emittance growth as the beam is travels through approximately one kilometer of linac and two bunch compressors before reaching the undulator. These beam requirements were demonstrated during the recent commissioning runs of the LCLS injector and linac [2] due to the successful design, fabrication, testing and operation of the LCLS gun. The goal of this paper is to relate the technical background of how the gun was able to achieve and in some cases exceed these requirements by understanding and correcting the deficiencies of the prototype s-band RF photocathode gun, the BNL/SLAC/UCLA Gun III. This paper begins with a brief history and technical description of Gun III and the Gun Test Facility (GTF) at SLAC, and studies of the gun's RF and emittance compensation solenoid. The work at the GTF identified the gun and solenoid deficiencies, and helped to define the specifications for the LCLS gun. ...
Date: September 24, 2008
Creator: Dowell, David H.; Jongewaard, Erik; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John et al.
Partner: UNT Libraries Government Documents Department

Advances in Parallel Electromagnetic Codes for Accelerator Science and Development

Description: Over a decade of concerted effort in code development for accelerator applications has resulted in a new set of electromagnetic codes which are based on higher-order finite elements for superior geometry fidelity and better solution accuracy. SLAC's ACE3P code suite is designed to harness the power of massively parallel computers to tackle large complex problems with the increased memory and solve them at greater speed. The US DOE supports the computational science R&D under the SciDAC project to improve the scalability of ACE3P, and provides the high performance computing resources needed for the applications. This paper summarizes the advances in the ACE3P set of codes, explains the capabilities of the modules, and presents results from selected applications covering a range of problems in accelerator science and development important to the Office of Science.
Date: February 7, 2011
Creator: Ko, Kwok; Candel, Arno; Ge, Lixin; Kabel, Andreas; Lee, Rich; Li, Zenghai et al.
Partner: UNT Libraries Government Documents Department

Multipacting Simulation on Half Wave Resonantor for Beta 0.53

Description: In the driver linac of the Facility for Rare Isotope Beams (FRIB), multipacting is an issue of concern for the superconducting resonators, which must accelerate the ion beams from 0.3 MeV per nucleon to 200 MeV per nucleon. While most of the multipacting bands can be conditioned and eliminated with RF, hard multipacting barriers may prevent the resonators from reaching the design voltage. Using the ACE3P code suite, multipacting bands can be computed and analysed with the Track3P module to identify potential problems in the resonator design. This paper will present simulation results for multipacting in half-wave resonators for the FRIB driver linac. The driver linac for the Facility for Rare Isotope Beams (FRIB) will use superconducting cavities to accelerate the heavy-ion beam to a minimum energy of 200 MeV/u. The first part of the driver linac utilizes two types of Quarter Wave Resonator (QWR) accelerating cavities operating at a frequency of 80.5 MHz to increase the beam energy to 17.5 MeV/u. The second part of the driver linac uses two types of Half Wave Resonators (HWR) cavities operating at a frequency of 322 MHz, with {beta} = 0.285 and 0.53 respectively to accelerate the beam to the final energy of 200 MeV/u. Multipacting (MP) is an issue of concern for superconducting resonators which may cause prolonged processing time or limit the achievable design gradient. While most of the MP bands may be conditioned and eliminated with RF, hard multipacting barriers may prevent the resonators from reaching the design voltage. Elimination of potential MP conditions in the cavity design could significantly reduce time and cost of conditioning and commissioning the driver linac. We have utilized the Track3P code, a module of ACE3P code suite, to analyze and identify the potential MP bands in the QWR and HWR cavities for the ...
Date: August 12, 2011
Creator: Ge, Lixin; Li, Zenghai; Ko, Kwok; /SLAC; Popielarski, John; Hartung, Walter et al.
Partner: UNT Libraries Government Documents Department

Shape Determination for Deformed Cavities

Description: A realistic superconducting RF cavity has its shape deformed comparing to its designed shape due to the loose tolerance in the fabrication process and the frequency tuning for its accelerating mode. A PDE-constrained optimization problem is proposed to determine the deformation of the cavity. A reduce space method is used to solve the PDE-constrained optimization problem where design sensitivities were computed using a continuous adjoint approach. A proof-of-concept example is given in which the deformation parameters of a single cavity-cell with two different types of deformation were computed.
Date: October 4, 2006
Creator: Lee, Lie-Quan; Akcelik, Volkan; Chen, Sheng; Ge, Lixin; Li, Zenghai; Ng, Cho et al.
Partner: UNT Libraries Government Documents Department

Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

Description: SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).
Date: August 1, 2008
Creator: Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas et al.
Partner: UNT Libraries Government Documents Department

Multiphysics Applications of ACE3P

Description: The TEM3P module of ACE3P, a parallel finite-element electromagnetic code suite from SLAC, focuses on the multiphysics simulation capabilities, including thermal and mechanical analysis for accelerator applications. In this pa- per, thermal analysis of coupler feedthroughs to supercon- ducting rf (SRF) cavities will be presented. For the realistic simulation, internal boundary condition is implemented to capture RF heating effects on the surface shared by a di- electric and a conductor. The multiphysics simulation with TEM3P matched the measurement within 0.4%.
Date: July 1, 2012
Creator: Lee, Ki H.; Ko, Kwok; Li, Zenghai; Ng, Cho-Kuen; Xiao, Liling; Cheng, G. et al.
Partner: UNT Libraries Government Documents Department