3 Matching Results

Search Results

Advanced search parameters have been applied.

Developing the Geokinetics/Department of Energy horizontal in situ retorting process. Final report

Description: This report summarizes work performed under a cooperative agreement between Geokinetics Inc., and the US Department of Energy, spanning on eight year period. A large body of experimental data was generated which has been previously reported in a series of published and unpublished reports, as indicated in Chapter VII. The report summarizes research work performed from April of 1975 to August 15, 1985, but emphasizes data generated during the final three years of the project, when five large retorts were tested. The report draws conclusions based upon the total program, including work performed by Geokinetics prior to entering into the Cooperative Agreement, and presents the initial parameters useful for scaleup and design of a commercial scale operation, including data useful for assessing the environmental impacts and criteria for mitigation of such impacts. Specific details concerning the various aspects of the program may be obtained from the many previous reports that have been generated from the date of project initiation. A list of these reports is presented in Chapter VII. 28 refs., 11 figs., 10 tabs.
Date: June 1, 1985
Creator: Lekas, M.A.
Partner: UNT Libraries Government Documents Department

Initial evaluation of fracturing oil shale with propellants for in situ retorting, Phase 2

Description: A series of field experiments was carried out to gather preliminary information on the use of propellant charges to create horizontal fractures in oil shale beds for in situ retorting. Development of a propellant tool specifically designed to create horizontal fractures, and testing of various sizes and designs of the tool to create fractures in oil shale beds were carried out simultaneously. Ten prototype tools with energy yields from 2 pounds to 60 pounds were fired at depths ranging from 10 feet to 60 feet. Ten preshot observation holes and 13 postshot core holes were used to gather information and to serve as injection wells to inject air into the formation for permeability tests. Most shots vented large volumes of gas or water from observation holes 13 to 20 feet distant, indicating that a horizontal fracture communicating from the shot point to the observation hole had been created. Shot-related horizontal fracturing was noted in most core holes at the same depth as the shot point. Air injection tests on all holes showed a significant increase in permeability after the shots.
Date: May 1, 1991
Creator: Lekas, M.A.; Lekas, J.M. & Strickland, F.G.
Partner: UNT Libraries Government Documents Department

Initial evaluation of fracturing oil shale with propellants for in situ retorting, Phase 2

Description: A series of field experiments was carried out to gather preliminary information on the use of propellant charges to create horizontal fractures in oil shale beds for in situ retorting. Development of a propellant tool specifically designed to create horizontal fractures, and testing of various sizes and designs of the tool to create fractures in oil shale beds were carried out simultaneously. Ten prototype tools with energy yields from 2 pounds to 60 pounds were fired at depths ranging from 10 feet to 60 feet. Ten preshot observation holes and 13 postshot core holes were used to gather information and to serve as injection wells to inject air into the formation for permeability tests. Most shots vented large volumes of gas or water from observation holes 13 to 20 feet distant, indicating that a horizontal fracture communicating from the shot point to the observation hole had been created. Shot-related horizontal fracturing was noted in most core holes at the same depth as the shot point. Air injection tests on all holes showed a significant increase in permeability after the shots.
Date: May 1, 1991
Creator: Lekas, M. A.; Lekas, J. M. & Strickland, F. G.
Partner: UNT Libraries Government Documents Department