12 Matching Results

Search Results

Advanced search parameters have been applied.

Safeguards and Security FY 1996 Program Plan: WBS 6.6

Description: The Safeguards and Security (SAS) Program is based upon integrity, competence and innovation in the protection of the public and Hanford resources through: (1) outstanding assistance, oversight, education, and counsel to their customers to ensure the protection of the public, site personnel, assets, and information; (2) value-added and cost-effective solutions to Hanford issues; and (3) risk management techniques to ensure effective asset protection, site accessibility, and the flexibility to adapt to changing customer needs. This plan is divided into two parts: overview and SAS WBS (work breakdown structure) dictionary sheets. The overview is divided into vision and mission, goals and objectives, assumptions and priorities, milestones, and a summary. The SAS WBS dictionary sheets are divided into department overhead, general and administrative, sitewide support, Hanford patrol, traffic safety, and locksmith services.
Date: August 1, 1995
Creator: Lee, F.D.
Partner: UNT Libraries Government Documents Department

Development and characterization of a CCD camera system for use on six-inch manipulator systems

Description: The Lawrence Livermore National Laboratory has designed, constructed, and fielded a compact CCD camera system for use on the Six Inch Manipulator (SIM) at the Nova laser facility. The camera system has been designed to directly replace the 35 mm film packages on all active SIM-based diagnostics. The unit`s electronic package is constructed for small size and high thermal conductivity using proprietary printed circuit board technology, thus reducing the size of the overall camera and improving its performance when operated within the vacuum environment of the Nova laser target chamber. The camera has been calibrated and found to yield a linear response, with superior dynamic range and signal-to-noise levels as compared to T-Max 3200 optic film, while providing real-time access to the data. Limiting factors related to fielding such devices on Nova will be discussed, in addition to planned improvements of the current design.
Date: May 3, 1996
Creator: Logory, L.M.; Bell, P.M.; Conder, A.D. & Lee, F.D.
Partner: UNT Libraries Government Documents Department

LDRD 93-ERP-166 Final report

Description: In this article, recent measurements made with LIFTIRS, the Livermore Imaging Fourier Transform Infrared Spectrometer, are presented. The experience gained with this instrument has produced a variety of insights into the tradeoffs-between signal to noise ratio (SNR), spectral resolution and temporal resolution for time multiplexed Fourier transform imaging spectrometers. This experience has also clarified the practical advantages and disadvantages of Fourier transform hyperspectral imaging spectrometers regarding adaptation to varying measurement requirements on SNR vs spectral resolution, spatial resolution and temporal resolution.
Date: July 1, 1995
Creator: Bennett, C.L.; Carter, M.R.; Fields, D.J. & Lee, F.D.
Partner: UNT Libraries Government Documents Department

Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)

Description: Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.
Date: May 10, 1995
Creator: Carter, M.R.; Bennett, C.L.; Fields, D.J. & Lee, F.D.
Partner: UNT Libraries Government Documents Department

Operating experience with the 50 MeV 10kA ATA power conditioning system

Description: The Advanced Test Accelerator (ATA) has been operational for over one year and has achieved full parameters in the power conditioning system. The pulsed power system has been previously described, however, during the past year of operation a considerable amount of statistical data has been accumulated on the 211 gas blown spark gaps that perform the main switching function in the ATA. These spark gaps were designed for 250kV, 40 kA and 70ns pulse. The parameter that made this spark gap somewhat unique was the requirement that it be able to provide a burst of ten pulses at one kilohertz with an average repetition rate of 5Hz. 2 references, 7 figures.
Date: June 1, 1984
Creator: Rogers, D.; Lee, F.D.; Newton, M.; Reginato, L.L. & Smith, M.E.
Partner: UNT Libraries Government Documents Department

Ground-penetrating radar for buried mine detection

Description: Lawrence Livermore National Laboratory (LLNL) is developing an ultra-wideband, side-looking, ground-penetrating impulse radar system that can be mounted on an airborne platform for the purpose of locating buried mines. The radar system is presently mounted on an 18-meter boom. The authors have successfully imaged a minefield located at the Nevada Test Site. The minefield consists of real and surrogate mines of various materials and sizes placed in natural vegetation. Some areas have been cleared for non-cluttered studies. A technical description of the system is presented, describing the wideband antennas, the video pulser, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware are off-the-shelf components. The data was processed using LLNL-developed image reconstruction software, and has been registered against the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter are presented.
Date: April 1, 1994
Creator: Sargis, P. D.; Lee, F. D.; Fulkerson, E. S.; McKinley, B. J. & Aimonetti, W. D.
Partner: UNT Libraries Government Documents Department

Target experimental area and systems of the U.S. National Ignition Facility

Description: One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools.
Date: December 17, 1999
Creator: Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D et al.
Partner: UNT Libraries Government Documents Department

Power-conditioning system for the Advanced Test Accelerator

Description: The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.
Date: June 1, 1982
Creator: Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L. et al.
Partner: UNT Libraries Government Documents Department


Description: The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3D Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range ({approx}3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields.
Date: September 1, 2005
Creator: Eder, D C; Song, P M; Latkowski, J F; Reyes, S; O'Brien, D W; Lee, F D et al.
Partner: UNT Libraries Government Documents Department

Hard X-ray and Hot Electron Environment in Vacuum Hohlraums at NIF

Description: Time resolved hard x-ray images (hv > 9 keV) and time integrated hard x-ray spectra (hv = 18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength NIF laser beams are presented as a function of hohlraum size and laser power and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (f{sub hot}) and a comparison to a filling model are presented.
Date: September 22, 2005
Creator: McDonald, J. W.; Suter, L. J.; Landen, O. L.; Foster, J. M.; Celeste, J. R.; Holder, J. P. et al.
Partner: UNT Libraries Government Documents Department

Laser coupling to reduced-scale targets at NIF Early Light

Description: Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.
Date: August 31, 2005
Creator: Hinkel, D E; Schneider, M B; Young, B K; Holder, J P; Langdon, A B; Baldis, H A et al.
Partner: UNT Libraries Government Documents Department